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Markov Decision Process (MDP)

S: set of states

A: set of actions
Pr(s’|s,a): transition model
R(s,a,s’): reward model
Y: discount factor
So+ start state

Objective of a Fully Observable MDP

= Findapolicy m: S > A
= which maximizes expected discounted reward

¢ given an infinite horizon

* assuming full observability




Partially-Observable MDP

{ S: set of states \

= A set of actions

= Pr(s’|s,a): transition model
= R(s,a,s’): reward model

=y discount factor

" s start state

= E set of possible evidence (observations)
= Pr(e]s)

/

Objective of a POMDP

= Find a policy
n: BeliefStates(S) > A
A belief state is a probability distribution over states

= which maximizes expected discounted reward

¢ given an infinite horizon

¢ assuming full observability

Classical Planning

100 <« Reward — -100

heaven hell

]

« World deterministic
« State observable

« Sequential Plan

=9

MDP-Style Planning

heaven hell

e
hahash Rt AR LA

« World stochastic

« Policy « State observable

Stochastic, Partially Observable

heaven? hell?

sign

Belief State

= State of agent’s mind
= Not just of world

= Note: Distribution: sum of probabilities = 1 1]




Planning in Belief Space

For now, assume movement is
deterministic
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Exp. Reward: 0
8 ®o® 3%
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Partially-Observable MDP

KS: set of states \

= A set of actions

= Pr(s’|s,a): transition model
= R(s,as’): reward model

Evidence Model

=S = {wa: Sebs Swm Sem Swuls Seul Swurs Seur} g
= E ={heat}
= Pr(e]s): Seo

Pr(heat | s,) = 1.0

Pr(heat | sg,) = 1.0

Planning in Belief Space Pr(heat | s,) = 0.2

100% 0%

50% 50%

17% 83%

-y discount factor Pr(heat | s,,,) = 0.2 ¥
" sy start state Pr(heat | sype) = 0.0

= E set of possible evidence (observations)

= Pr(e]s) / Sub
POMDPs Problems

= In POMDPs we apply the very same idea as in MDPs.

m Since the state is not observable, the agent has to
make its decisions based on the belief state which is a
posterior distribution over states.

m Let b be the belief of the agent about the state under
consideration.

m POMDPs compute a value function over belief space:

Vi) = max [r(b.uw) +Y[ Vi1 (Dp(¥ | u,b)
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m Each belief is a probability distribution, thus, each value
in a POMDP is a function of an entire probability
distribution.

m This is problematic, since probability distributions are
continuous.

m How many belief states are there?

m For finite worlds with finite state, action, and
measurement spaces and finite horizons, however, we
can effectively represent the value functions by
piecewise linear functions.
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An lllustrative Example

measurements | state X, action uy state X, measurements
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The Parameters of the Example

= The actions u; and u, are terminal actions.

= The action u, is a sensing action that potentially
leads to a state transition.
m The horizon is finite and y=1.

r(zy,u1) —100 r(zo,u1) = 4100
r(z1,u5) = +100 (w2, u2) —50 4mm
r(z1,u3) -1 r(z2,u3) -1
p(ay|e1,uz) = 0.2 p(abley,uz) = 0.8
p(at|zo,uz) = 0.8 p(zhlza,uz) = 0.2
p(z1lz1) = 0.7 p(z2z1) = 03
p(z1|lz2) = 0.3 p(zalz2) = 0.7

Payoff in POMDPs

= In MDPs, the payoff (or return)
depended on the state of the system.

= In POMDPs, however, the true state is
not exactly known.

m Therefore, we compute the expected
payoff by integrating over all
states:

r(bu) = Eg[r(z,w)]
/r(z,u)p(w) dx
= p1r(z1,u) +p2 (w2, u)
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Payoffs in Our Example (1)

= If we are totally certain that we are in state x, and
execute action u;, we receive a reward of -100

= If, on the other hand, we definitely know that we
are in x, and execute u,, the reward is +100.

= In between it is the linear combination of the
extreme values weighted by the probabilities

r(b,u1) = —100 p; + 100 p>
= —100p; + 100 (1 —p1)

r(b,uz) = 100p; —50 (1 —p1)

-1

r(b,u3) v

Payoffs in Our Example (2)
o T(byu1) o (b, un)

b 02 04 06 o8 1 %02 o4 08 08

(b, u3) V1(b) = mazyr(b,u)

23

The Resulting Policy for T=1

m Given we have a finite POMDP with
T=1, we would use V,(b) to
determine the optimal policy.

m In our example, the optimal policy
for T=1is

up ifp; <
m1(b) =

~Nw  Nw

up if p; >

m This is the upper thick graph in the
diagram.
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Piecewise Linearity, Convexity

m The resulting value function V,(b) is
the maximum of the three functions
at each point

@) = max r(b,w)

—100p; +100 (1 —p1)
max 100 p1 —50 (1 —pl)
-1

m It is piecewise linear and convex.
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Pruning

m If we carefully consider V,(b), we see
that only the first two components
contribute.

m The third component can therefore
safely be pruned away from V,(b).

_ —100p; +100 (1 —p1)
Vih) = max{ 100p;  —50 (1 —p1)
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Payoffs in Our Example (2)
100 T(bv ul) 100 T(bV u2)

b 02 04 06 o8 1 % 02 04 o6 o8

(b, u3) V1(b) = maxzyr(b,u)
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Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

Vi(b)
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Increasing the Time Horizon

m Assume the robot can make an observation before
deciding on an action.

Suppose the robot perceives z, for which

p(z, | x,)=0.7 and p(z,| x,)=0.3.

Given the observation z; we update the belief using
Bayes rule.

_0.7p,
p(@@)

. _03(-p)

o op()
p(z,)=0.7p,+0.31- p,)=0.4p,+0.3

Py
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Value Function

Va(b)

b'(b12,)
Va(blz,) s




Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

m Suppose the robot perceives z, for which
p(z, | Xx,)=0.7 and p(z,| x,)=0.3.

m Given the observation z; we update the belief using
Bayes rule.

m Thus V.5 ! z.) is given by
INUsS v (0| Zy) iS given oy

_ . 0.7p . 0.3%11,)
100 p(21) +100 p(z1)
100 - 27P1 _s0 . 0.3 (1-p1)

p(21) p(z1)

_ 1 —70p1 +30(1—p1)
= pGu) max{ 70p; ~15(1—p1)

Vi(b|z1) = max

Expected Value after Measuring

m Since we do not know in advance what
the next measurement will be, we have
to compute the expected belief

Vi(b) =E,[V,(b] 2)]= Z P(zVi(blz)

-3 p@), MJ
2.p(2) 1[ o(2)

~

Z (p(z 1%)p,)
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Expected Value after Measuring

= Since we do not know in advance what
the next measurement will be, we have
to compute the expected belief

Vi(b) = E:[Vi(b|2)]
2
= > p(z) Vb | z)
i=1

_ —70p; +30 (1 -p1)
= max{ 70p1 —15(1—p1)
-30p; +70(1—m>}

max
* { 30p ~35(1-p1)
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Resulting Value Function

m The four possible combinations yield the
following function which then can be simplified
and pruned.

~70p1 +30(1—p1) +30p1 —35(1—p1)
+70p1 —-15(1-p1) -30p1 +70(1—p1)
+70p1 —15(1-p1) +30p1 —35(1-p1)

—70p1 +30(1-p1) —30p1 +70 (1 —p1)
V1(b) = max

+40p1  +55(1-p1)

~100p; +100 (1 —p1)
max
+100p;  —50 (1 -p1)
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Value Function
p(z,) Vi(blz,)

\bar{V},(b)

oo ———r— P(Z2) V2(blZ3) 35

State Transitions (Prediction)

= When the agent selects u, its state potentially
changes.

= When computing the value function, we have to take
these potential state changes into account.

,
1 = Eilp(zi|z,u3)] o
2
= Y p(z1 |z, u3)p;
i=1
= 0.2p1+ 0-8(1 _pl)cz
= 0.8-0.6p;

0 02 04 06 0.8 1
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Resulting Value Function after executing u,

Taking the state transitions into account, we finally obtain.

~70p1 +30 (1 —p1) —30p; +70 (1 —py)

o _ —70p1 +30(1—p1) +30p1 —35(1—p1)
Vi) = max3 205 —15(1-p1) —30p1 470 (1-p1)
+70p1 -15(1-p1) +30p1 —35(1-p1)

max{

+40p;  +55(1—p1)

~100p; 4100 (1-py)
+100p;  —50 (1 —p1)

) 60p1 —60 (1 —p1)
Vi(b|uz) = max 52p; +43(1-p1)
-20p; +70(1-p1) .

Value Function after executing u;

\bar{V},(b) ° \

\bar{V};(bJuz)

Value Function for T=2

m Taking into account that the agent can
either directly perform u, or u, or first u; and
then u, or u,, we obtain (after pruning)

—100p; +100 (1 —p1)
(b)) = max{ 100p; —50 (1 —p1)
51py +42(1—-p1)
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Graphical Representation
of V,(b)

100 u, optimal u, optimal

unclear
50}

measuring is
important
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Deep Horizons and Pruning

m We have now completed a full backup in belief space.
m This process can be applied recursively.
m The value functions for T=10 and T=20 are

Why Pruning is Essential

= Each update introduces additional linear
components to V.

m Each measurement squares the number of
linear components.

= Thus, an unpruned value function for T=20
includes more than 10547:8%4 linear functions.

At T=30 we have 10561.012.337 [inear functions.

The pruned value functions at T=20, in
comparison, contains only 12 linear components.

= The combinatorial explosion of linear components
in the value function are the major reason why
POMDPs are impractical for most

applications. -




POMDP Summary

® POMDPs compute the optimal action in partially
observable, stochastic domains.

m For finite horizon problems, the resulting value
functions are piecewise linear and convex.

m in each iteration the number of finear
constraints grows exponentially.

m POMDPs so far have only been applied
successfully to very small state spaces with small
numbers of possible observations and actions.
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