
5/7/2012

1

CSE 473: Artificial Intelligence
Reinforcement Learning

Dan Weld

Many slides adapted from either Dan Klein, Stuart Russell,
Luke Zettlemoyer or Andrew Moore 1

Today’s Outline

 Reinforcement Learning

 Q-value iteration

 Q-learning

 Exploration / exploitation

 Linear function approximation Linear function approximation

Recap: MDPs
 Markov decision processes:
 States S
 Actions A
 Transitions T(s,a,sʼ) aka P(sʼ|s,a)
 Rewards R(s,a,sʼ) (and discount)
 Start state s0 (or distribution P0)

a

s

s, a

s,a,sʼ
sʼ

0 (0)
 Algorithms
 Value Iteration
 Q-value iteration

 Quantities:
 Policy = map from states to actions
 Utility = sum of discounted future rewards
 Q-Value = expected utility from a q-state

 Ie. from a state/action pair
Andrey Markov
(1856‐1922)

Bellman Equations

4

Q*(a, s) =

Bellman Backup

V4= 0

Q5(s,a1) = 2 + 0
~ 2

Q5(s,a2) = 5 + 0.9~ 1
+ 0.1~ 2

~ 6.1
V5= 6.5

5 a2

a1

s0

s1

V4= 1

V4= 2

Q5(s,a3) = 4.5 + 2
~ 6.5

max

a2

a3

s0

s2

s3

Q-Value Iteration
 Regular Value iteration: find successive approx optimal values

 Start with V0
*(s) = 0

 Given Vi
*, calculate the values for all states for depth i+1:

Qi+1(s,a)

 Storing Q-values is more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:

Vi(s’)]

5/7/2012

2

Q-Value Iteration

Initialize each q-state: Q0(s,a) = 0

Repeat
For all q-states, s,a

Compute Qi+1(s,a) from Qi by Bellman backup at s,a.

Until maxs,a |Qi+1(s,a) – Qi(s,a)| <

Vi(s’)]

Reinforcement Learning
 Markov decision processes:
 States S
 Actions A
 Transitions T(s,a,sʼ) aka P(sʼ|s,a)
 Rewards R(s,a,sʼ) (and discount)
 Start state s0 (or distribution P0)

a

s

s, a

s,a,sʼ0 (0)
 Algorithms
 Q-value iteration Q-learning

 Approaches for mixing exploration & exploitation
 -greedy
 Exploration functions

sʼ

Applications

 Robotic control
 helicopter maneuvering, autonomous vehicles
 Mars rover - path planning, oversubscription planningg g
 elevator planning

 Game playing - backgammon, tetris, checkers
 Neuroscience
 Computational Finance, Sequential Auctions
 Assisting elderly in simple tasks
 Spoken dialog management
 Communication Networks – switching, routing, flow control
 War planning, evacuation planning

Stanford Autonomous Helicopter

http://heli.stanford.edu/

10

Two main reinforcement learning
approaches

 Model-based approaches:
 explore environment & learn model, T=P(sʼ|s,a) and R(s,a),

(almost) everywhere

 use model to plan policy, MDP-style

h l d t t t th ti l lt approach leads to strongest theoretical results

 often works well when state-space is manageable

 Model-free approach:
 donʼt learn a model; learn value function or policy directly

 weaker theoretical results

 often works better when state space is large

Two main reinforcement learning
approaches

 Model-based approaches:
Learn T + R

|S|2|A| + |S||A| parameters (40,000)

 Model-free approach:
Learn Q

|S||A| parameters (400)

5/7/2012

3

Recap: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work? Because samples appear with the right
frequencies!

Recap: Exp. Moving Average

 Exponential moving average
 Makes recent samples more important

 Forgets about the past (distant past values were wrong anyway)

 Easy to compute from the running average

 Decreasing learning rate can give converging averages

Q-Learning Update

 Q-Learning = sample-based Q-value iteration

 How learn Q*(s,a) values?
 Receive a sample (s a sʼ r) Receive a sample (s,a,s ,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Exploration-Exploitation tradeoff

 You have visited part of the state space and found a
reward of 100
 is this the best you can hope for???

 Exploitation: should I stick with what I know and find
d li hi k l d ?

16

a good policy w.r.t. this knowledge?
 at risk of missing out on a better reward somewhere

 Exploration: should I look for states w/ more
reward?
 at risk of wasting time & getting some negative reward

Exploration / Exploitation

 Several schemes for action selection
 Simplest: random actions (greedy)
 Every time step, flip a coin
 With probability , act randomly

With b bilit 1 t di t t li

 Problems with random actions?
 You do explore the space, but keep thrashing

around once learning is done
 One solution: lower over time
 Another solution: exploration functions

 With probability 1- , act according to current policy

Q-Learning: Greedy

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

5/7/2012

4

Exploration Functions

 Exploration function

 When to explore
 Random actions: explore a fixed amount

 Better idea: explore areas whose badness is not (yet) established

Exploration function
 Takes a value estimate and a count, and returns an

optimistic utility, e.g.
(exact form not important)

 Exploration policy π(s’)=

vs.

Q-Learning Final Solution

 Q-learning produces tables of q-values:

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy
 If you explore enough

 If you make the learning rate small enough

 … but not decrease it too quickly!

 Not too sensitive to how you select actions (!)y ()

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E

Q-Learning – Small Problem

 Doesn’t work

 In realistic situations, we can’t possibly learn about
every single state!
 Too many states to visit them all in trainingToo many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we need to generalize:
 Learn about a few states from experience
 Generalize that experience to new, similar states

(Fundamental idea in machine learning)

Example: Pacman

 Letʼs say we discover
through experience
that this state is bad:

 In naïve Q learning,
we know nothing
about related states
and their Q values:

 Or even this third one!

Feature-Based Representations

 Solution: describe a state using a
vector of features (properties)
 Features are functions from states to

real numbers (often 0/1) that capture
important properties of the state

 Example features: Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.

 Can also describe a q-state (s, a) with features
(e.g. action moves closer to food)

5/7/2012

5

Linear Feature Functions

 Using a feature representation, we can write a
q function (or value function) for any state
using a linear combination of a few weights:

 Disadvantage: states may share features but
actually be very different in value!

 Advantage: our experience is summed up in
a few powerful numbers

|S|2|A| ? |S||A| ?

Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states

with that stateʼs features

 Formal justification: online least squares

Exact Qʼs

Approximate Qʼs

Example: Q-Pacman

20

40

20

22

24

26

Linear Regression

0 20
0

0
10

20
30

40

0

10

20

30

20

Prediction Prediction

Ordinary Least Squares (OLS)

Error or “residual”

0 20
0

Error or residual

Prediction

Observation

Minimizing Error
Imagine we had only one point x with features f(x):

Approximate q update:

“target” “prediction”

5/7/2012

6

15

20

25

30

Degree 15 polynomial

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

Which Algorithm?

Q-learning, no features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?

Q-learning, no features, 1000 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?

Q-learning, simple features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Partially observable MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(sʼ|s,a) (or T(s,a,sʼ))
 Rewards R(s,a,sʼ) (and discount) a

b

 Start state distribution b0=P(s0)

 POMDPs, just add:
 Observations O
 Observation model P(o|s,a) (or O(s,a,o))

b, a

o

bʼ

A POMDP: Ghost Hunter

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

5/7/2012

7

POMDP Computations

 Sufficient statistic: belief states
 bo=Pr(so)

a

b

b, a

 POMDPs search trees
 max nodes are belief states
 expectation nodes branch on possible

observations
 (this is motivational; we will not discuss in detail)

,

o

bʼ

Types of Planning Problems

State Action Model

Classical
Planning

observable Deterministic,
accurate

38

MDPs observable stochastic

POMDPs partially
observable

stochastic

Classical Planning

hellheaven

39

• World deterministic
• State observable

MDP-Style Planning

hellheaven

40

• World stochastic
• State observable• Policy

• Universal Plan
• Navigation function

Stochastic, Partially Observable

?? heavenhellhellheaven ??

41

sign

start

signsign

50% 50%

sign

start

Stochastic, Partially Observable

hell?heaven?

42

sign

5/7/2012

8

Stochastic, Partially Observable

hellheaven heavenhell

43

sign sign

Stochastic, Partially Observable

heavenhell??hellheaven

44

signsignsign

start

50% 50%

Notation (1)
 Recall the Bellman optimality equation:

 Throughout this section we assume

)(max)(
)(

sVRPsV a
ss

s

a
ss

sAa

11

45

is independent of so that the Bellman optimality
equation turns into

),(
11

asrRR a
s

a
ss

s

a
ss

sAa
s

a
ss

a
s

sAa
PsVasrPsVRsV)(),(max)(max)(

)()(

's

Notation (2)
 In the remainder we will use a slightly different notation for

this equation:

 According to the previously used notation we would write

46

 We replaced s by x and a by u, and turned the sum into an
integral.

s

a
ss

sAa
PsVasrsV)(),(max)(

)(

Value Iteration

 Given this notation the value iteration formula is

47

with

POMDPs
 In POMDPs we apply the very same idea as in MDPs.

 Since the state is not observable, the agent has to
make its decisions based on the belief state which is a
posterior distribution over states.

 Let b be the belief of the agent about the state under

48

g
consideration.

 POMDPs compute a value function over belief spaces:

5/7/2012

9

Problems
 Each belief is a probability distribution, thus, each value

in a POMDP is a function of an entire probability
distribution.

 This is problematic, since probability distributions
are continuous.

49

 Additionally, we have to deal with the huge complexity
of belief spaces.

 For finite worlds with finite state, action, and
measurement spaces and finite horizons, however, we
can effectively represent the value functions by
piecewise linear functions.

An Illustrative Example

2x1x 3u
8.0

z
1z

3u

2.0

3.07.0

measurements action u3 state x2 measurementsstate x1

1z

z

50

2z 3

8.0
2.0

7.03.0

payoff

1u 2u 1u 2u

100 50100 100

actions u1, u2

payoff

2z

The Parameters of the Example
 The actions u1 and u2 are terminal actions.

 The action u3 is a sensing action that potentially leads to a
state transition.

 The horizon is finite and =1.

51

Payoff in POMDPs
 In MDPs, the payoff (or return) depended on

the state of the system.
 In POMDPs, however, the true state is not

exactly known.
 Therefore, we compute the expected payoff

52

by integrating over all states:

Payoffs in Our Example (1)
 If we are totally certain that we are in state x1 and execute

action u1, we receive a reward of -100

 If, on the other hand, we definitely know that we are in x2

and execute u1, the reward is +100.

 In between it is the linear combination of the extreme
l i ht d b th i b biliti

53

values weighted by their probabilities

Payoffs in Our Example (2)

54

5/7/2012

10

The Resulting Policy for T=1
 Given we have a finite POMDP with T=1,

we would use V1(b) to determine the
optimal policy.
 In our example, the optimal policy for T=1

is

55

is

 This is the upper thick graph in the
diagram.

Piecewise Linearity, Convexity
 The resulting value function V1(b) is the

maximum of the three functions at each
point

56

 It is piecewise linear and convex.

Pruning
 If we carefully consider V1(b), we see that

only the first two components contribute.

 The third component can therefore safely
be pruned away from V1(b).

57

Increasing the Time Horizon
 If we go over to a time horizon of T=2, the agent can also

consider the sensing action u3.

 Suppose we perceive z1 for which p(z1 | x1)=0.7 and p(z1|
x2)=0.3.

 Given the observation z1 we update the belief using Bayes

58

rule.

 Thus V1(b | z1) is given by

Expected Value after Measuring
 Since we do not know in advance what the next

measurement will be, we have to compute the
expected belief

59

Resulting Value Function
 The four possible combinations yield the following

function which again can be simplified and pruned.

60

5/7/2012

11

State Transitions (Prediction)
 When the agent selects u3 its state potentially

changes.

 When computing the value function, we have
to take these potential state changes into
account

61

account.

Resulting Value Function after
executing u3

 Taking also the state transitions into account, we
finally obtain.

62

Value Function for T=2

 Taking into account that the agent can either
directly perform u1 or u2, or first u3 and then u1

or u2, we obtain (after pruning)

63

Graphical Representation
of V2(b)

u1 optimal u2 optimal

unclear

64

outcome of
measuring is
important
here

Deep Horizons and Pruning
 We have now completed a full backup in belief

space.

 This process can be applied recursively.

 The value functions for T=10 and T=20 are

65

Why Pruning is Essential
 Each update introduces additional linear components

to V.

 Each measurement squares the number of linear
components.

 Thus, an unpruned value function for T=20 includes more
th 10547 864 li f ti

66

than 10547,864 linear functions.

 At T=30 we have 10561,012,337 linear functions.

 The pruned value functions at T=20, in comparison,
contains only 12 linear components.

 The combinatorial explosion of linear components in the
value function are the major reason why POMDPs are
impractical for most applications.

5/7/2012

12

A Summary on POMDPs
 POMDPs compute the optimal action in

partially observable, stochastic domains.

 For finite horizon problems, the resulting value
functions are piecewise linear and convex.

 In each iteration the number of linear

67

constraints grows exponentially.

 POMDPs so far have only been applied
successfully to very small state spaces with
small numbers of possible observations and
actions.

