

Stanford Autonomous Helicopter

- Robotic control
 - helicopter maneuvering, autonomous vehicles
- Mars rover path planning, oversubscription planning
- elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control

Two main reinforcement learning

approaches

explore environment & learn model, T=P(s'|s,a) and R(s,a),

don't learn a model; learn value function or policy directly

War planning, evacuation planning

Model-based approaches:

use model to plan policy, MDP-style

approach leads to strongest theoretical resultsoften works well when state-space is manageable

often works better when state space is large

(almost) everywhere

Model-free approach:

weaker theoretical results

Two main reinforcement learning approaches

 Model-based approaches: Learn T + R

http://heli.stanford.edu/

|S|²|A| + |S||A| parameters (40,000)

Model-free approach:

Learn Q

|S||A| parameters (400)

Recap: Sampling Expectations• Want to compute an expectation weighted by P(x): $E[f(x)] = \sum_x P(x)f(x)$ • Model-based: estimate P(x) from samples, compute expectation $x_i \sim P(x)$ $\hat{E}[f(x)] \approx \sum_x \hat{P}(x)f(x)$

 $\hat{P}(x) = \operatorname{count}(x)/k$

- Model-free: estimate expectation directly from samples $x_i \sim P(x) \qquad \quad E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)$
- Why does this work? Because samples appear with the right frequencies!

$\begin{array}{l} \textbf{Q-Learning Update} \\ \bullet \ Q-Learning = sample-based Q-value iteration \\ & Q^*(s,a) = \sum\limits_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right] \\ \bullet \ How \ learn \ Q^*(s,a) \ values? \\ \bullet \ Receive \ a \ sample \ (s,a,s',r) \\ \bullet \ Consider \ your \ old \ estimate: \ Q(s,a) \\ \bullet \ Consider \ your \ new \ sample \ estimate: \\ & sample \ = \ R(s,a,s') + \gamma \max_{a'} Q(s',a') \\ \bullet \ Incorporate \ the \ new \ estimate \ into \ a \ running \ average: \\ & Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \ [sample] \end{array}$

- You have visited part of the state space and found a reward of 100
- is this the best you can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
- at risk of missing out on a better reward somewhere
- **Exploration**: should I look for states w/ more reward?
- at risk of wasting time & getting some negative reward

16

Exploration / Exploitation

- Several schemes for action selection
 - Simplest: random actions (*ε greedy*)
 - Every time step, flip a coin
 - $\hfill With probability \epsilon$, act randomly
 - $\hfill \label{eq:constraint}$ With probability 1- $\epsilon,$ act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions

Q-Learning: ϵ Greedy

QuickTime[™] and a H.264 decompressor are needed to see this pictur

Doesn't work

- In realistic situations, we can't possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we need to generalize:
 - · Learn about a few states from experience
 - Generalize that experience to new, *similar* states (Fundamental idea in machine learning)

Linear Feature Functions

 Using a feature representation, we can write a q function (or value function) for any state using a linear combination of a few weights:

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

 Advantage: our experience is summed up in a *few* powerful numbers

 Disadvantage: states may share features but actually be very different in value!

	Stato	Action Mode
Classical Planning	observable	Deterministic, accurate
MDPs	observable	stochastic
POMDPs	partially observable	stochastic

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

49

The Parameters of the Example

- The actions u_1 and u_2 are terminal actions.
- The action *u_j* is a sensing action that potentially leads to a state transition.
- The horizon is finite and γ =1.

$r(x_1, u_1)$ $r(x_1, u_2)$ $r(x_1, u_3)$	=	-100 + 100 - 1	$r(x_2, u_1)$ $r(x_2, u_2)$ $r(x_2, u_3)$	=	+100 -50 -1	
$p(x'_1 x_1, u_3)$ $p(x'_1 x_2, u_3)$	=	0.2 0.8	$p(x'_2 x_1, u_3)$ $p(z'_2 x_2, u_3)$	=	0.8 0.2	
$p(z_1 x_1)$ $p(z_1 x_2)$	=	0.7 0.3	$p(z_2 x_1)$ $p(z_2 x_2)$	=	0.3 0.7	51

Payoffs in Our Example (1) If we are totally certain that we are in state x₁ and execute action u₁, we receive a reward of -100 If, on the other hand, we definitely know that we are in x₂ and execute u₁, the reward is +100. In between it is the linear combination of the extreme values weighted by their probabilities r(b, u₁) = -100 p₁ + 100 p₂

$$= -100 p_1 + 100 (1 - p_1)$$
$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

53

$$u_3) = -1$$

 $r(b, \cdot$

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use V₁(b) to determine the optimal policy.
- In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \le \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

55

• This is the upper thick graph in the diagram.

State Transitions (Prediction)

- When the agent selects *u*₃ its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p'_{1} = E_{x}[p(x_{1} | x, u_{3})]$$

= $\sum_{i=1}^{2} p(x_{1} | x_{i}, u_{3})p_{i}$
= $0.2p_{1} + 0.8(1 - p_{1})$
= $0.8 - 0.6p_{1}$

61

A Summary on POMDPs

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

67