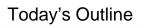
CSE 473: Artificial Intelligence Spring 2012

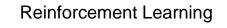
Reinforcement Learning

Dan Weld

Many slides adapted from either Dan Klein, Stuart Russell, Luke Zettlemoyer or Andrew Moore



- Reinforcement Learning
 - Passive Learning
 - TD Updates
 - Q-value iteration
 - Q-learning
 - Linear function approximation

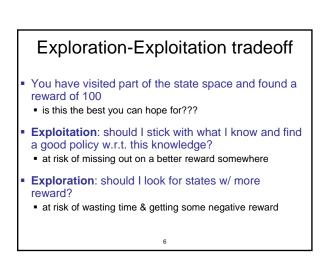


- Still have an MDP
 - Still looking for policy π
- New twist: don't know T or R
 - Don't know what actions do
 - Nor which states are good!
- Must actually try out actions to learn

Formalizing the reinforcement learning problem

- Given a set of states S and actions A
- Interact with world at each time step t.
- $\hfill \hfill \hfill$
- you give next action a_t
- Goal: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

The "	'C	re	dit	Ass	ignr	ne	nt"	Problem
I'm in state 43,			rewa	reward = 0, action = 2				
"	"	"	39,	"	= 0,	"	= 4	
"	"	"	22,	"	= 0,	"	= 1	
"	"	"	21,	"	= 0,	"	= 1	
"	"	"	21,	"	= 0,	"	= 1	
"	"	"	13,	"	= 0,	"	= 2	
"	"	"	54,	"	= 0,	"	= 2	
"	"	"	26,	"	= 100 ,			
Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there?? This is the Credit Assignment problem.								



Two main reinforcement learning approaches

Model-based approaches:

- explore environment & learn model, T=P(s' |s,a) and R(s,a), (almost) everywhere
- use model to plan policy, MDP-style
- approach leads to strongest theoretical results
- often works well when state-space is manageable

Model-free approach:

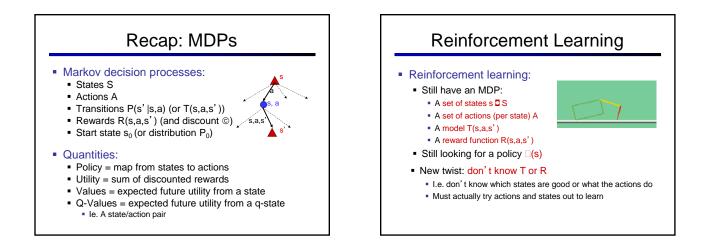
- don't learn a model; learn value function or policy directly
- weaker theoretical results
- often works better when state space is large

Passive vs. Active learning

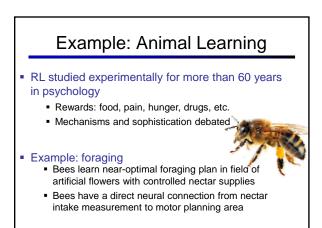
- Passive learning
 - The agent has a *fixed policy*
 - Tries to learn utilities of states by observing world go by
 - Analogous to policy evaluation
 - Often serves as a component of active learning algorithms
 - Often inspires active learning algorithms

Active learning

- Agent tries to find a good policy by acting in the world
- Analogous to solving the underlying MDP
 - But without first being given the MDP model

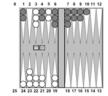


What is it doing?							
QuickTime™ and a H.24 decompressor are needed to see this picture.							



Example: Backgammon

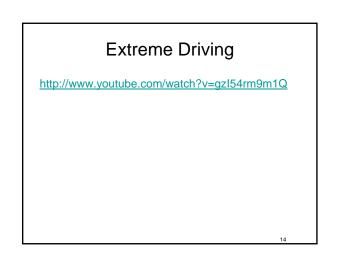
- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to V(s) using a neural network
 Combined with depth 3



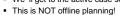
• You could imagine training Pacman this way...

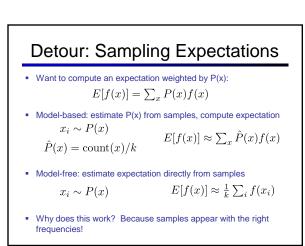
search, one of the top 3 players in the world

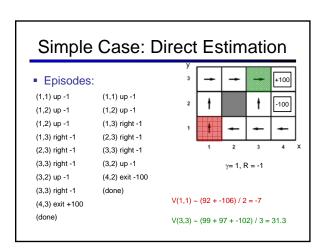
... but it's tricky! (It's also P3)



War planning, evacuation planning



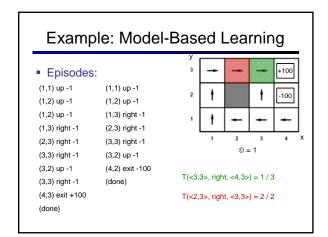


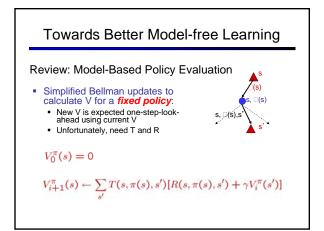


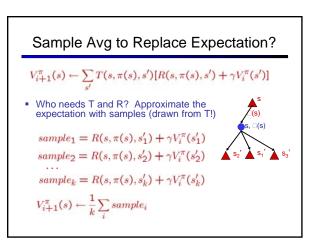
Model-Based Learning

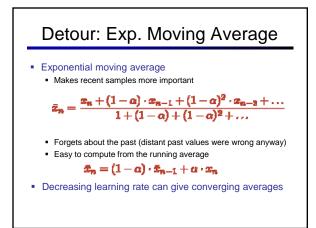
Idea:

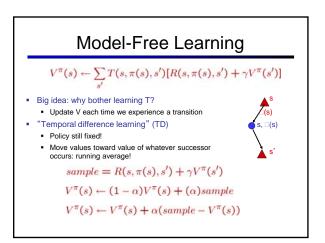
- Learn the model empirically (rather than values)
- Solve the MDP as if the learned model were correct
- Better than direct estimation?
- Empirical model learning
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') the first time we experience (s,a,s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. "stationary noise")

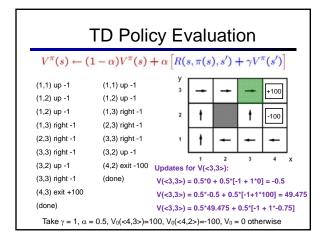


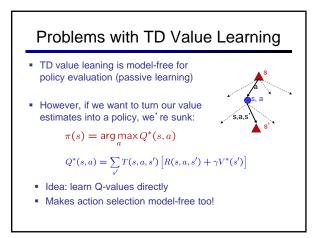


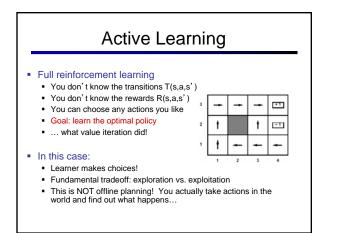


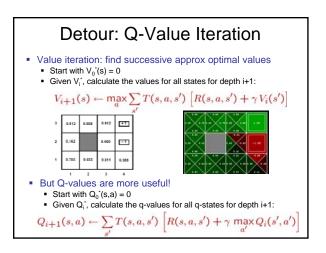


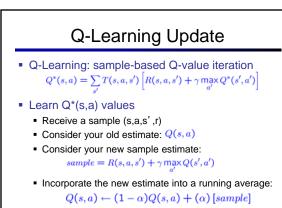


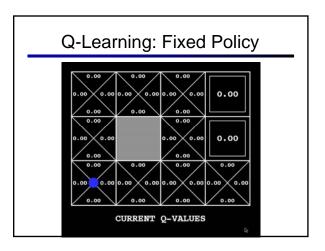






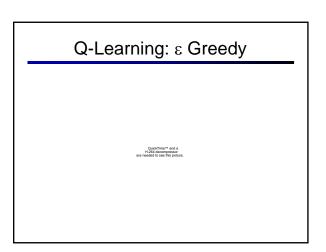


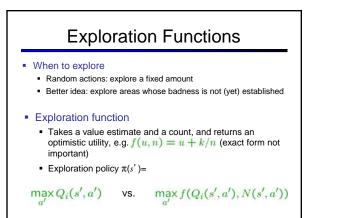


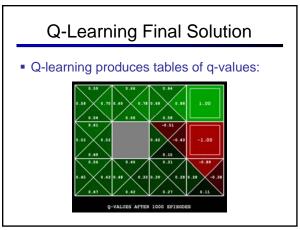


Exploration / Exploitation

- Several schemes for action selection
 - Simplest: random actions (*ε greedy*)
 Every time step, flip a coin
 - With probability ϵ , act randomly
 - With probability 1- ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing
 - around once learning is done One solution: lower ε over time
 - Another solution: exploration functions





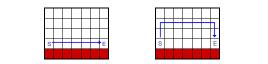


Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Not too sensitive to how you select actions (!)

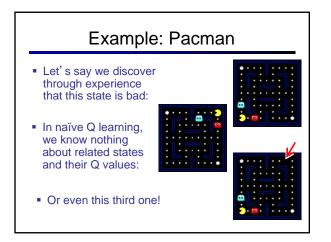
Neat property: off-policy learning

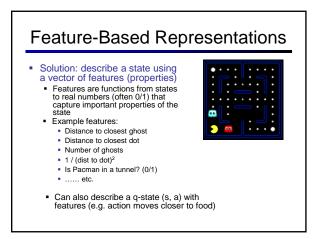
learn optimal policy without following it (some caveats)



Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

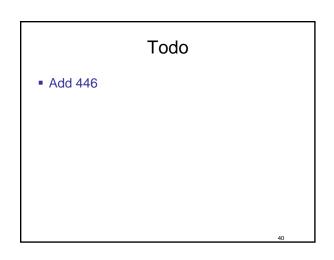


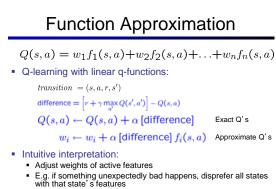


• Using a feature representation, we can write a q function (or value function) for any state using a linear combination of a few weights: $V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

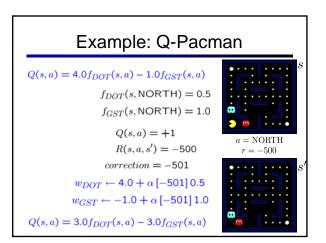
 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

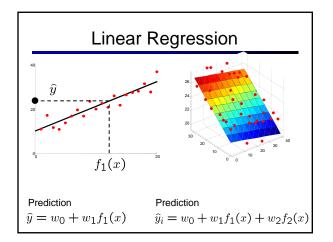
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

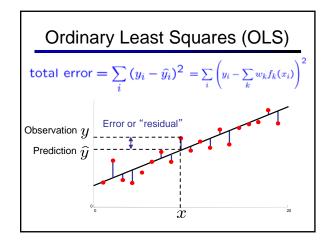


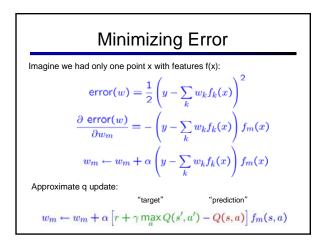


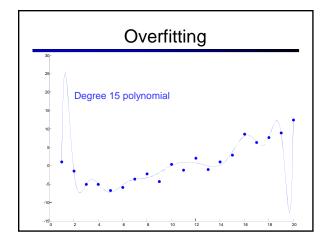
Formal justification: online least squares

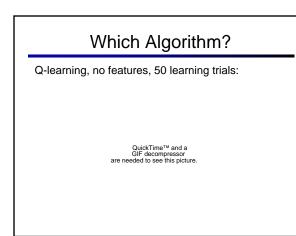


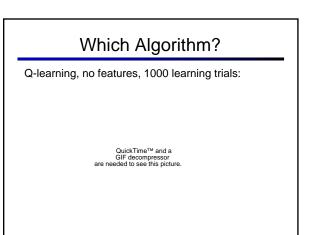








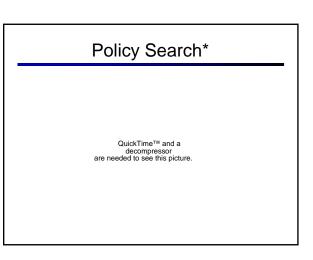




Which Algorithm?

Q-learning, simple features, 50 learning trials:

QuickTime™ and a GIF decompressor are needed to see this picture



Policy Search*

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Policy Search*

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:

 $\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, optional material)
- Take uphill steps, recalculate derivatives, etc.