
5/4/2012

1

CSE 473: Artificial Intelligence
Spring 2012

R i f t L iReinforcement Learning

Dan Weld

Many slides adapted from either Dan Klein, Stuart Russell,
Luke Zettlemoyer or Andrew Moore

1

Today’s Outline

 Reinforcement Learning

 Passive Learning

 TD Updates

 Q-value iterationQ value iteration

 Q-learning

 Linear function approximation

Reinforcement Learning

 Still have an MDP
 Still looking for policy

New twist: don’t know T or R New twist: don t know T or R
 Don’t know what actions do

 Nor which states are good!

 Must actually try out actions to learn

Formalizing the reinforcement
learning problem

 Given a set of states S and actions A

 Interact with world at each time step t:
 world gives state s and reward r world gives state st and reward rt

 you give next action at

 Goal: (quickly) learn policy that (approximately)
maximizes long-term expected discounted
reward

The “Credit Assignment” Problem

I’m in state 43, reward = 0, action = 2

“ “ “ 39, “ = 0, “ = 4

“ “ “ 22, “ = 0, “ = 1

“ “ “ 21, “ = 0, “ = 1

“ “ “ 21, “ = 0, “ = 1

“ “ “ 13 “ = 0 “ = 2

Yippee! I got to a state with a big reward!

But which of my actions along the way actually helped me
get there??

This is the Credit Assignment problem.

13, = 0, = 2

“ “ “ 54, “ = 0, “ = 2

“ “ “ 26, “ = 100,

Exploration-Exploitation tradeoff

 You have visited part of the state space and found a
reward of 100
 is this the best you can hope for???

 Exploitation: should I stick with what I know and find
d li hi k l d ?

6

a good policy w.r.t. this knowledge?
 at risk of missing out on a better reward somewhere

 Exploration: should I look for states w/ more
reward?
 at risk of wasting time & getting some negative reward

5/4/2012

2

Two main reinforcement learning
approaches

 Model-based approaches:
 explore environment & learn model, T=P(s’|s,a) and R(s,a),

(almost) everywhere

 use model to plan policy, MDP-style

h l d t t t th ti l lt approach leads to strongest theoretical results

 often works well when state-space is manageable

 Model-free approach:
 don’t learn a model; learn value function or policy directly

 weaker theoretical results

 often works better when state space is large

Passive vs. Active learning

 Passive learning
 The agent has a fixed policy

 Tries to learn utilities of states by observing world go by

 Analogous to policy evaluation

8

 Often serves as a component of active learning algorithms

 Often inspires active learning algorithms

 Active learning
 Agent tries to find a good policy by acting in the world

 Analogous to solving the underlying MDP
 But without first being given the MDP model

Recap: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount)

a

s

s, a

s,a,s’(, ,) ()
 Start state s0 (or distribution P0)

 Quantities:
 Policy = map from states to actions
 Utility = sum of discounted rewards
 Values = expected future utility from a state
 Q-Values = expected future utility from a q-state

 Ie. A state/action pair

s’

Reinforcement Learning

 Reinforcement learning:
 Still have an MDP:

 A set of states s � S

 A set of actions (per state) A

(’) A model T(s,a,s’)

 A reward function R(s,a,s’)

 Still looking for a policy �(s)

 New twist: don’t know T or R
 I.e. don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

What is it doing?

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

Example: Animal Learning

 RL studied experimentally for more than 60 years
in psychology
 Rewards: food, pain, hunger, drugs, etc.

 Mechanisms and sophistication debated

 Example: foraging
 Bees learn near-optimal foraging plan in field of

artificial flowers with controlled nectar supplies

 Bees have a direct neural connection from nectar
intake measurement to motor planning area

5/4/2012

3

Example: Backgammon

 Reward only for win / loss in
terminal states, zero
otherwise

 TD-Gammon learns a
function approximation to V(s)
using a neural networkusing a neural network

 Combined with depth 3
search, one of the top 3
players in the world

 You could imagine training
Pacman this way…

 … but it’s tricky! (It’s also
P3)

Extreme Driving

http://www.youtube.com/watch?v=gzI54rm9m1Q

14

Other Applications

 Robotic control
 helicopter maneuvering, autonomous vehicles
 Mars rover - path planning, oversubscription planningg g
 elevator planning

 Game playing - backgammon, tetris, checkers
 Neuroscience
 Computational Finance, Sequential Auctions
 Assisting elderly in simple tasks
 Spoken dialog management
 Communication Networks – switching, routing, flow control
 War planning, evacuation planning

Passive Learning

 Simplified task
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You are given a policy (s)
 Goal: learn the state values (and maybe the model)Goal: learn the state values (and maybe the model)
 I.e., policy evaluation

 In this case:
 Learner “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 We’ll get to the active case soon
 This is NOT offline planning!

Detour: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work? Because samples appear with the right
frequencies!

Simple Case: Direct Estimation

 Episodes:

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,1) up -1

(1,2) up -1

(1,3) right -1

+100

-100

x
(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
V(1,1) ~ (92 + -106) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

= 1, R = -1

5/4/2012

4

Model-Based Learning

 Idea:
 Learn the model empirically (rather than values)
 Solve the MDP as if the learned model were correct
 Better than direct estimation?

E i i l d l l i Empirical model learning
 Simplest case:

 Count outcomes for each s,a
 Normalize to give estimate of T(s,a,s’)
 Discover R(s,a,s’) the first time we experience (s,a,s’)

 More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.g.
“stationary noise”)

Example: Model-Based Learning

 Episodes:

y

+100

-100
(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,1) up -1

(1,2) up -1

(1,3) right -1

x

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

 = 1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Towards Better Model-free Learning

 Simplified Bellman updates to
calculate V for a fixed policy:
 New V is expected one-step-look-

ahead using current V

�(s)

s

s, �(s)

s, �(s),s’

Review: Model-Based Policy Evaluation

ahead using current V
 Unfortunately, need T and R s’

Sample Avg to Replace Expectation?

 Who needs T and R? Approximate the
expectation with samples (drawn from T!) �(s)

s

s �(s)s, �(s)

s1’s2’ s3’

Detour: Exp. Moving Average

 Exponential moving average
 Makes recent samples more important

 Forgets about the past (distant past values were wrong anyway)

 Easy to compute from the running average

 Decreasing learning rate can give converging averages

Model-Free Learning

 Big idea: why bother learning T?

 Update V each time we experience a transition

 “Temporal difference learning” (TD)

�(s)

s

s, �(s)p g ()
 Policy still fixed!

 Move values toward value of whatever successor
occurs: running average!

, ()

s’

5/4/2012

5

TD Policy Evaluation

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,1) up -1

(1,2) up -1

(1,3) right -1

+100

-100

y

Take = 1, = 0.5, V0(<4,3>)=100, V0(<4,2>)=-100, V0 = 0 otherwise

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Updates for V(<3,3>):

V(<3,3>) = 0.5*0 + 0.5*[-1 + 1*0] = -0.5

V(<3,3>) = 0.5*-0.5 + 0.5*[-1+1*100] = 49.475

V(<3,3>) = 0.5*49.475 + 0.5*[-1 + 1*-0.75]

x

Problems with TD Value Learning

 However, if we want to turn our value
estimates into a policy, we’re sunk:

a

s

s, a

s,a,s’

 TD value leaning is model-free for
policy evaluation (passive learning)

p y,
s’

 Idea: learn Q-values directly

 Makes action selection model-free too!

Active Learning

 Full reinforcement learning
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You can choose any actions you like
 Goal: learn the optimal policyGoal: learn the optimal policy
 … what value iteration did!

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning! You actually take actions in the

world and find out what happens…

Detour: Q-Value Iteration
 Value iteration: find successive approx optimal values

 Start with V0
*(s) = 0

 Given Vi
*, calculate the values for all states for depth i+1:

 But Q-values are more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:

Q-Learning Update

 Q-Learning: sample-based Q-value iteration

 Learn Q*(s,a) values
 Receive a sample (s a s’ r) Receive a sample (s,a,s ,r)

 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Q-Learning: Fixed Policy

5/4/2012

6

Exploration / Exploitation

 Several schemes for action selection
 Simplest: random actions (greedy)
 Every time step, flip a coin
 With probability , act randomly

With b bilit 1 t di t t li

 Problems with random actions?
 You do explore the space, but keep thrashing

around once learning is done
 One solution: lower over time
 Another solution: exploration functions

 With probability 1- , act according to current policy

Q-Learning: Greedy

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

Exploration Functions

 Exploration function

 When to explore
 Random actions: explore a fixed amount

 Better idea: explore areas whose badness is not (yet) established

Exploration function
 Takes a value estimate and a count, and returns an

optimistic utility, e.g. (exact form not
important)

 Exploration policy π(s’)=

vs.

Q-Learning Final Solution

 Q-learning produces tables of q-values:

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy
 If you explore enough

 If you make the learning rate small enough

 … but not decrease it too quickly!

 Not too sensitive to how you select actions (!)y ()

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E

Q-Learning

 In realistic situations, we cannot possibly learn
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states

from experience
 Generalize that experience to new, similar states
 This is a fundamental idea in machine learning, and

we’ll see it over and over again

5/4/2012

7

Example: Pacman

 Let’s say we discover
through experience
that this state is bad:

 In naïve Q learning,
we know nothing
about related states
and their Q values:

 Or even this third one!

Feature-Based Representations

 Solution: describe a state using
a vector of features (properties)
 Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

 Example features: Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.

 Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a
q function (or value function) for any state
using a linear combination of a few weights:

 Disadvantage: states may share features but
actually be very different in value!

 Advantage: our experience is summed up in
a few powerful numbers

Todo

 Add 446

40

Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

5/4/2012

8

20

40

20

22

24

26

Linear Regression

0 20
0

0
10

20
30

40

0

10

20

30

20

Prediction Prediction

Ordinary Least Squares (OLS)

E “ id l”

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error
Imagine we had only one point x with features f(x):

Approximate q update:

“target” “prediction”

15

20

25

30

Degree 15 polynomial

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

Which Algorithm?

Q-learning, no features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Which Algorithm?

Q-learning, no features, 1000 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

5/4/2012

9

Which Algorithm?

Q-learning, simple features, 50 learning trials:

QuickTime™ and a
GIF decompressor

are needed to see this picture.

Policy Search*

QuickTime™ and a
 decompressor

are needed to see this picture.

Policy Search*

 Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

 We’ll see this distinction between modeling and prediction again We ll see this distinction between modeling and prediction again
later in the course

 Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

 This is the idea behind policy search, such as what
controlled the upside-down helicopter

Policy Search*

 Simplest policy search:
 Start with an initial linear value function or q-function

 Nudge each feature weight up and down and see if
your policy is better than before

 Problems:
 How do we tell the policy got better?

 Need to run many sample episodes!

 If there are a lot of features, this can be impractical

Policy Search*

 Advanced policy search:
 Write a stochastic (soft) policy:

 Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

 Take uphill steps, recalculate derivatives, etc.

