CSE 473 Markov Decision Processes

Dan Weld

Many slides from Chris Bishop, Mausam, Dan Klein,

Stuart Russell, Andrew Moore & Luke Zettlemoyer

MDPs

Markov Decision Processes
¢ Planning Under Uncertainty

¢ Mathematical Framework
e Bellman Equations
¢ Value Iteration

* Real-Time Dynamic Programmin
Y g & Andrey Markov

* Policy Iteration (1856-1922)

¢ Reinforcement Learning

4/30/2012

Overview

¢ Introduction & Agents

e Search, Heuristics & CSPs

o Adversarial Search

¢ Logical Knowledge Representation
® Planning & MDPs

* Reinforcement Learning

e Uncertainty & Bayesian Networks
e Machine Learning

* NLP & Special Topics

Planning Agent

Static vs. Dynamic

Review: Expectimax

= What if we don’t know what the result of an action
will be? E.g.,
¢ In solitaire, next card is unknown
¢ |n pacman, the ghosts act randomly

= Can do expectimax search
= Max nodes as in minimax search
= Chance nodes, like min nodes, except
the outcome is uncertain - take
average (expectation) of children
= Calculate expected utilities

k Today, we formalize as an Markov Decision Process
= Handle intermediate rewards & infinite plans
= More efficient processing

Fully
VS.
Partially .
Observable Deter\rl'r;\nlstlc
What action Stochastic
next?
Perfect Instantaneous
vs. VS.
Noisy Durative
Percepts Actions
| -0, —]
Grid World
= Walls block the agent’s path
= Agent’s actions may go astray: 3
= 80% of the time, North action
takes the agent North 2 ()
(assuming no wall)
= 10% - actually go West PN .
= 10% - actually go East
= If there is a wall in the chosen 1 2 * 4
direction, the agent stays put
0.8
= Small “living” reward each step
0.1 0.4

= Big rewards come at the end
= Goal: maximize sum of rewards

Markov Decision Processes

= An MDP is defined by:
e Asetofstatesse S 3
e AsetofactionsaeA

e Atransition function T(s,a,s’)
e Prob that a from s leads to s’ 2
e ie,P(s'|s,a)

* Also called “the model”
e Areward function R(s, a, s’) 1 | sTART

* Sometimes just R(s) or R(s")
* Astart state (or distribution) 1 2 3 4
* Maybe a terminal state

!

E

¢ MDPs: non-deterministic search

Reinforcement learning: MDPs where we don’t 01 01
know the transition or reward functions

4/30/2012

Axioms of Probability Theory

= All probabilities between 0 and 1
0<P(A<1

= Probability of truth and falsity
P(true)=1 P(false) = 0.

= The probability of disjunction is:
P(AvB)=P(A)+P(B)—P(AAB)

@

8

Terminology

o

e
Marginal Probability
Wi Ty } r; SX =) — %—»
‘ Conditional
Joint Probability Probability

Conditional Probability

= P(A| B) is the probability of A given B
= Assumes:

* Bis all and only information known.
= Defined by:

P(AAB)
P(B)

‘@

P(A|B)=

WX =Y —g) = "2 MY = X =) = 7
LX value is given
Independence

= A and B are independent iff:
P(A[B)=P(A) . . .
These constraints logically equivalent
P(B[A)=P(B)

= Therefore, if A and B are independent:

P(AIB) =" o2 =Py

P(AAB)=P(A)P(B)

12

Independence

P(AAB) = P(A)P(B)

Conditional Independence
A&B not independent, since P(A|B) < P(A)

4/30/2012

Conditional Independence
But: A&B are made independent by —C

P(A|-C) =
P(A[B,~C)

True

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that
¢ conditioned on the present state,
o the future is independent of the past

= For Markov decision processes,
“Markov” means:

P(Siy1=5'|St = 54, At = a4, Sp—1 = 841, At—1,... S0 = 50)

P(St+1 = S’|Sz =51, Ay = at)

Solving MDPs

= In deterministic single-agent search problems, want an optimal
plan, or sequence of actions, from start to a goal

= Inan MDP, we want an optimal policy t*: S > A
* Apolicy 7 gives an action for each state
* An optimal policy maximizes expected utility if followed
* Defines a reflex agent

3 — — — E
Optimal policy when 2|t . t (=3
R(s, a,s’) =-0.03
for all non-terminals s 1 f -— | -— | -—
1 2 3 4

Example Optimal Policies

= | | = | | »|»|E]

A - | A | |=
R(s) =-0.01 R(s) =-0.03

|| = |

A |

b|=|d|=

--b---m

g

i =
i

L B

R(s)=-0.4 R(s) = -2.0

Example: High-Low

= Three card types: 2, 3,4

¢ Infinite deck, twice as many 2’s
= Start with 3 showing
= After each card, you say “high” or “low”
= New card is flipped

¢ If you're right, you win the points shown on
the new card

e Ties are no-ops (no reward)-0
¢ If you're wrong, game ends

= Differences from expectimax problems:
= #]: get rewards as you go
= #2: you might play forever!

4/30/2012

High-Low as an MDP

= States:

e 2,3,4,done
= Actions:

¢ High, Low
= Model: T(s, a, s'):
P(s'=4 | 4, Low) = 1/4
P(s’=3 | 4, Low) = 1/4
P(s'=2 | 4, Low) = 1/2
P(s’=done | 4, Low) =0
P(s'=4 | 4, High) = 1/4
P(s'=3 | 4, High) =0
P(s'=2 | 4, High) =0
P(s’=done | 4, High) =3/4

= Rewards: R(s, a, s'):
¢ Number shown on s’ if s'<s A a="high” ...
¢ 0otherwise

= Start: 3

Search Tree: High-Low

High

., High

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

(s.a)isa =
g-state

(s,a,8”) called a
. transition

e T(s,a,s”) =P(s’]s,a)
R(s.a.8")

o

Utilities of Sequences

= In order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:
[ryrgyr1sra,. . = [y r’b. :Jl. :"2. N |
<
[r-q, r1.72,..0] = [16 r"l. ;-’2_ |

= Theorem: only two ways to define stationary utilities
= Additive utility:

U(lrp,r1.re, ..) =ro+ri+ra+--

= Discounted utility:
U(lrg.r1.r,...]) = rg 4 r1 +9%r2---

Infinite Utilities?!

= Problem: infinite state sequences have infinite rewards

|||z

= Solutions:
 Finite horizon:

i ==

-] -]

* Terminate episodes after a fixed T steps (e.g. life)

* Gives nonstationary policies (t depends on time left)
¢ Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “done” for High-Low)

¢ Discounting:for0<y<1
=
U(lro....moc]) = Y A're < Rmax/(1 - 7)
t=0

* Smaller y means smaller “horizon” — shorter term focus

Discounting

i

Yre < Rmax/(1

U(lrg,...r=]} =

t

1l
o

= Typically discount
rewards by y< 1 each
time step ’
* Sooner rewards have
higher utility than ’
later rewards g
¢ Also helps the
algorithms converge

)

4/30/2012

Recap: Defining MDPs Optimal Utilities

= Markov decision processes: Define the value of
. = Define the value of a state s:
States S V’(s) = expected utility starting in s and acting optimally
= Define the value of a g-state (s,a): P
Q’(s,a) = expected utility starting in s, taking actiona -
and thereafter acting optimally
= Define the optimal policy: P
7'(s) = optimal action from state s 7

e Start state s,
* Actions A
¢ Transitions P(s’|s, a)
aka T(s,a,s’)
¢ Rewards R(s,a,s’) (and discount y)

= MDP quantities so far: s
e Policy, © = Function that chooses an action for each state

wnz | 1] |- |- | —= |3

o Utility (aka “return”) = sum of discounted rewards 2 we | 1) 2 | t |&em
t | omes | oess | ost1 | eas 1 ' -— - | -—
1 H a 4 1 2 3 4

The Bellman Equations Why Not Search Trees?

= Definition of “optimal utility” leads to a simple
one-step look-ahead relationship between
optimal utility values: =

. . - v = Problems: k3
V*i(s) = IH’IEIX Q" (s,a) F £ R, This tree is usually infinite (why?)
Q*(s,a) =Y T(s,a,s) [R(S-, a,s") + A/V*(s/)] = e e eime) '

AI

D ?
(1920-1984) We would search once per state (why?)

V*(s) = max Y T(s,a,s") [R(s,a,s") + 7 V*(s)]

i y = Why not solve with expectimax?

= |dea: Value iteration
* Compute optimal values for all states all at
once using successive approximations

- Will be a bottom-up dynamic program similar
a in cost to memoization

Do all planning offline, no replanning needed!

Value Estimates Value Iteration
] . = |dea:
= Calculate estimates V,’(s) e Start with V,,"(s) = 0, which we know is right (why?)
* The optimal value considering only next k time steps e Given V/, calculate the values for all states for depth i+1:

(k rewards)
¢ Ask->w, V, approaches the optimal value
Vig1(s) — maxy T(s,a,¢") [R(s,a,8") + 1;(.H-’)|
= Why: R
® If discounting, distant rewards become e This is called a value update or Bellman update

negligible .
= If terminal states reachable from * Repeat until convergence
everywhere, fraction of episodes not
ending becomes negligible
= Otherwise, can get infinite expected
utility and then this approach actually
won’t work »

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Em
Example: Bellman Updates~""=>*

Wwz|o

11 0 0 0 0 1 ? ? ? ?

Vera(a) = maz) T(s,a,) [R(s,a, o) +7Vi{e)] = maxQey1 (s, 0)
-
Qu((3, 2), right} = Y_ T3, 7). cight, #) [R((3, %), right, &) + +Vi(#)]
L4

=0.8+[0.040.9=10]+0.1=[0.0+0.9+0.0 4+0.1=[0.0+09=0.0|

4/30/2012

Example: Value Iteration

Vi \E

E
w
o
o
o
]
[=]
N
[
E

3 0 0 [0.72

! 0 0 0 0 ! 0 0 0 0

1 2 3 4 1 2 3 4

= |Information propagates outward from terminal
states and eventually all states have correct value
estimates

Example: Value Iteration

Practice: Computing Actions

= Which action should we chose from state s:

e Given optimal values Q?

argmax Q*(s,a)
a

¢ Given optimal values V?
argmax > T(s,a,s)[R(s.a,s) +V*(s)]
a
5/

e Lesson: actions are easier to select from Q’s!

Convergence

= Define the max-norm: ||I7|| = max, |U/(s)]

= Theorem: For any two approximations U and V
(|8 — v < 4 U = VY|
* |.e. any distinct approximations must get closer to each other, so, in

particular, any approximation must get closer to the true U and value
iteration converges to a unique, stable, optimal solution

= Theorem:
Ut — Ut < €, = ||[UTL —U|| < 2ev/(1 — %)

* |.e. once the change in our approximation is small, it must also be
close to correct

Value Iteration Complexity

= Problem size:
e |A| actions and |S]| states

= Each Iteration
e Computation: O(|A[-]|S]|?)
® Space: O(|S])

= Num of iterations
e Can be exponential in the discount factor y

4/30/2012

Bellman Equations for MDP,

* <V,D,8r,U,sqy>
¢ Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

¢ V* should satisfy the following equation:

V*(s) = max_ Y Pr(s|s,a) [R(s,a,s') +V*(s)
a€Ap(s) s

Bellman Backup (MDP,) Bellman Backup
Qq(s,a)=2+y0

* Given an estimate of V* function (say V,) max i(s.a0) 2 5 Y
* Backup V, function at state s Qy(s,3,) =5 +70.95 1

e calculate a new estimate (V,,,) : V=0 +y0.15 2

~6.1
Quii(s.a) = Y Pr(s'ls.a) U(s,a.s') +1a(s))] Qy(s,2) =45 +72
Vopr(s) = max_ [Quir (o) h
) = m 5,
nF1ls a€Ap(s) nt11,a

* Q,,4(s,a) : value/cost of the strategy: Voo

e execute action a in s, execute 7, subsequently

* T, = argMaX,eapsQn(s,a)

Value iteration seimans7) Policy Computation
.) . Optimal policy is stationary and time-independent.
* assign an arbitrary assignment of V, to each state. = =
(s) = argmax Q*(s,a)
a€Ap(s)
* repeat = argmax > Pr(s'|s,a) ﬁJ(Sva, ED) +’YV*(5/)}
a€Ap(s) gcs

Iteration n+1

o for all state
compute V,,(s) by Bellman backup at s
VI VY

* until max W" Residual(s)

4/30/2012

Asynchronous Value Iteration

= States may be backed up in any order
e instead of an iteration by iteration
= As long as all states backed up infinitely often

¢ Asynchronous Value Iteration converges to
optimal

Asynch VI: Prioritized Sweeping

= Why backup a state if values of successors
same?

= Prefer backing a state
¢ whose successors had most change

= Priority Queue of (state, expected change in
value)

= Backup in the order of priority

= After backing a state update priority queue
o for all predecessors

Asynch VI: Real Time Dynamic Programming
[Barto, Bradtke, Singh’95]

e Trial: simulate greedy policy starting from start state;
perform Bellman backup on visited states

e RTDP: repeat Trials until value function converges

RTDP Trial

Qy+1(Soa)

Agreedy = 9

Comments

* Properties
« if all states are visited infinitely often then V, > V*

e Advantages
¢ Anytime: more probable states explored quickly

¢ Disadvantages
e complete convergence can be slow!

Review: Expectimax

= What if we don’t know what the result
of an action will be? E.g.,
* In solitaire, next card is unknown
* In minesweeper, mine locations
* In pacman, the ghosts act randomly

= Can do expectimax search
= Chance nodes, like min nodes,
except the outcome is uncertain
= Calculate expected utilities
= Max nodes as in minimax search
= Chance nodes take average
(expectation) of value of children

=Today, we’ll learn how to formalize the
underlying problem as a Markov
Decision Process

Grid World

4/30/2012

The agent lives in a grid

Walls block the agent’s path 3 (52|
The agent’s actions do not always go as

planned:

80% of the time, the action North 2 . =
takes the agent North

(if there is no wall there) 1| st

10% of the time, North takes the ; - - ”

agent West; 10% East
If there is a wall in the direction 08
the agent would have been taken,
the agent stays put

Small “living” reward each step

0.1 0.1

Big rewards come at the end

Markov Decision Processes

= An MDP is defined by:

e Asetofstatess@S 3

e Asetofactionsa@A

* A transition function T(s,a,s’)
* Prob that a from s leads to s’ 2 ==
e ie.,P(s'|s,a)

* Also called the model
* Areward function R(s, a, s’) 1 | sTART
* Sometimes just R(s) or R(s’)

* Astart state (or distribution) 1 2 3 4

* Maybe a terminal state

= MDPs: non-deterministic search
problems 0.1 04
= Reinforcement learning: MDPs
where we don’t know the transition
or reward functions

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given the
present state, the future and the past are
independent

= For Markov decision processes,
“Markov” means:

P(Siy1 =5'|St = 84, Ap = a4, S4—1 = 841, Ay—1,... S0 = s0)

P(Siy1 = 8|St = 51, Ap = ay)

Solving MDPs

= In deterministic single-agent search problems, want an optimal
plan, or sequence of actions, from start to a goal

= Inan MDP, we want an optimal policy [1*: S > A
¢ Anpolicy (] gives an action for each state
* An optimal policy maximizes expected utility if followed
* Defines a reflex agent

3 — — — E
Optimal policy 2 ' . ' 0
when R(s, a, 8”) =
-0.03 for all non- 1 f -— -—| -—
terminals s

Example Optimal Policies

||| | ||

) - |m A | |
R(s)=- R(s) =-0.03
0.01

= || = |1 = | = |

)) |= [=
R(s)=- R(s)=-

Example: High-Low

Three card types: 2, 3, 4

Infinite deck, twice as many 2’s
Start with 3 showing

After each card, you say “high” or
“low”

New card is flipped

If you’re right, you win the points
shown on the new card

Ties are no-ops

If you’re wrong, game ends

= Differences from expectimax problems:
= #]: get rewards as you go
= #2: you might play forever!

4/30/2012

High-Low as an MDP

Search Tree: High-Low

= States: 2, 3, 4, done

= Actions: High, Low

= Model: T(s, a, s'):

P(s’=4 | 4, Low) = 1/4
P(s’=3 | 4, Low) =1/4
P(s’=2 | 4, Low) =1/2
P(s’=done | 4, Low) =0
P(s'=4 | 4, High) = 1/4
P(s’=3 | 4, High) =0
P(s'=2 | 4, High) =0
P(s’=done | 4, High) =3/4

.
= Rewards: R(s, a, s'):
o Number shownons'ifs s
¢ 0 otherwise
= Start: 3

’

High

., High

MDP Search Trees

Utilities of Sequences

= Each MDP state gives an expectimax-like search tree

(s.a)isa =
g-state

(s,a,8”) called a
. transition

e T(s,a,s”) =P(s’]s,a)
R(s.a.8")

o

= In order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:
[ryrgyr1sra,. . = [y r’b. :Jl. :"2. N |
<
[r-q, r1.72,..0] = [16 r"l. ;-’2_ |

= Theorem: only two ways to define stationary utilities
= Additive utility:
U(lrp,r1.re, ..) =ro+ri+ra+--

= Discounted utility:
U([ro,r1,72:--) = v +r1 + 422+

Infinite Utilities?!

Discounting

= Problem: infinite state sequences have infinite rewards

|||z

= Solutions: 7 =

* Finite horizon: i
L B B

* Terminate episodes after a fixed T steps (e.g. life)

* Gives nonstationary policies (" depends on time left)
¢ Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “done” for High-Low)

¢ Discounting:for0<© <1
=i
U(lro....moc]) = Y A're < Rmax/(1 - 7)
t=0

¢ Smaller © means smaller “horizon” — shorter term focus

i

Ullro, ... Toc]) = '_.rr'r < Rmax/(1

t

1l
o

= Typically discount
rewards by © < 1
each time step ’
* Sooner rewards have
higher utility than g
later rewards g
¢ Also helps the
algorithms converge

)

10

4/30/2012

Recap: Defining MDPs Optimal Utilities

o ko ecesiesroesyrer
e States S .
e Start state s
e Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
* Rewards R(s,a,s’) (and discount ©)

Define the value of a state s:
V’(s) = expected utility starting in s and acting optimally
= Define the value of a g-state (s,a):

Q’(s,a) = expected utility starting in s, taking action a
and thereafter acting optimally

= Define the optimal policy:
“(s) = optimal action from state s

= MDP quantities so far:
¢ Policy = Choice of action for each state
o Utility (or return) = sum of discounted rewards

wnz | 1] |- |- | —= |3

2 v | [T et t |3
t | omes | oess | ost1 | eas 1 ' -— - | -—
1 H a 4 1 2 3 4
The Bellman Equations Why Not Search Trees?
= Definition of “optimal utility” leads to a * Why not solve with expectimax?

simple one-step lookahead relationship
amongst optimal utility values: ® Problems:

* This tree is usually infinite (why?)

* Same states appear over and over (why?)

= Formally:
* We would search once per state (why?)

Vi(s) = max Q" (s.a . .
(=) PR (5,0) = |dea: Value iteration
* Compute optimal values for all states all at
Q*(s,a) =Y T(s,a,5") [R(S-, a,s') + ‘/V*(S/)} once using successive approximations
s Will be a bottom-up dynamic program similar
in cost to memoization
Do all planning offline, no replanning needed!

V*(s) = max Y T(s,a,s") [R(s,a,s") + 7 V*(s)]

=7

Value Estimates Value Iteration
= Calculate estimates V,"(s) = |dea:
» The optimal value considering only e Start with V,"(s) = 0, which we know is right (why?)
next k time steps (k rewards) ¢ Given V/', calculate the values for all states for depth i+1:
e Ask (], it approaches the optimal
value Vig1(s) — max ¥ T(s.a,s") [R(s.a,8) + 4 Vi(s)
L] Why [-Tr-
= If discounting, distant rewards become
negligible * Thisis called a value update or Bellman update
= If terminal states reachable from * Repeat until convergence

everywhere, fraction of episodes not
ending becomes negligible
= Otherwise, can get infinite expected
utility and then this approach actually
won’t work s

= Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

11

Em
Example: Bellman Updates~""=>*

Wwz|o

11 0 0 0 0 1 ? ? ? ?

Vera(a) = maz) T(s,a,) [R(s,a, o) +7Vi{e)] = maxQey1 (s, 0)
-
Qu((3, 2), right} = Y_ T3, 7). cight, #) [R((3, %), right, &) + +Vi(#)]
L4

=0.8+[0.040.9=10]+0.1=[0.0+0.9+0.0 4+0.1=[0.0+09=0.0|

4/30/2012

Example: Value Iteration

Vi \E

E
w
o
o
o
]
[=]
N
[
E

3 0 0 [0.72

! 0 0 0 0 ! 0 0 0 0

1 2 3 4 1 2 3 4

= |Information propagates outward from terminal
states and eventually all states have correct value
estimates

Example: Value Iteration

Practice: Computing Actions

= VUM acton SHouTg We Chose Tom state o

¢ Given optimal values Q?

argmax Q*(s,a)
® Given Cpunfur varucs v

argmax > T(s,a,s)[R(s.a,s) +V*(s)]

/
e Lesson: acuons areSeaS|er TO selectrom W's!

Convergence

= Define the max-norm: ||I7|| = max, |U/(s)]

= Theorem: For any two approximations U and V
(|8 — v < 4 U = VY|
* |.e. any distinct approximations must get closer to each other, so, in

particular, any approximation must get closer to the true U and value
iteration converges to a unique, stable, optimal solution

= Theorem:
Ut — Ut < €, = ||[UTL —U|| < 2ev/(1 — %)

* |.e. once the change in our approximation is small, it must also be
close to correct

Value Iteration Complexity

= Problem size:
e |A| actions and |S]| states

= Each Iteration
e Computation: O(|A[-]|S]|?)
® Space: O(|S])

= Num of iterations
e Can be exponential in the discount factor y

12

Utilities for Fixed Policies

= Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy
= Define the utility of a state s, under
a fixed policy
V' (s) = expected total discounted
rewards (return) starting in s and
following

= Recursive relation (one-step look-
ahead / Bellman equation):

VT(s) =Y T(s,7(s), s)[R(s,7(5),5") + vV (s)]

4/30/2012

Policy Evaluation

- T IR c. | [T
R e e e A=im=miri~ch I =aA-aua—y e

Idea one: modify Bellman updates

Vg (s) =0

ea () = TG m(a), DG, 7).) + 47 ()]

whatever)

Policy Iteration

= PTOTTETT T VAU T OO

e Considering all actions each iteration is slow: takes |A| times
longer than policy evaluation

* But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

e Step 1: Policy evaluation: calculate utilities for a fixed policy (not
optimal utilities!) until convergence (fast)

e Step 2: Policy improvement: update policy using one-step
lookahead with resulting converged (but not optimal!) utilities
(slow but infrequent)

e Repeat steps until policy converges

Policy Iteration

" POt O T T IR COTT e L POy e v T
n =
simplified Bellman updates:
¢ |terate until values converge

VIEL(8) — 3 T(s,mk(s),8) [R5, me(s),5) + 9 \f‘r(.ﬁ)]
PGuvy,...wc..-f’c..;. WILI HAGU ULIHLISS, HHIU LIS MEL asuiun

according to one-step look-ahead

mr+1(s) = argmax ¥ T(s,a,¢") [R(s,a,s') 4 7 '-'--'-(_.-’)|
a ot

Policy Iteration Complexity

= Problem size:
e |A| actions and |S| states

= Each Iteration
e Computation: O(|S|3+ |A]-]|S]|?)
® Space: O(|S])

= Num of iterations
e Unknown, but can be faster in practice
e Convergence is guaranteed

Comparison

" T

* Every pass (or “backup”) updates both utilities (explicitly, based on current
utilities) and policy (possibly implicitly, based on current policy)

= |n policy iteration:
* Several passes to update utilities with frozen policy
* Occasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

* Any sequences of partial updates to either policy entries or utilities will
converge if every state is visited infinitely often

13

