CSE 473 Markov Decision Processes

Dan Weld

Many slides from Chris Bishop, Mausam, Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoye

Overview

- Introduction & Agents
- Search, Heuristics & CSPs
- Adversarial Search
- Logical Knowledge Representation
- Planning & MDPs
- Reinforcement Learning
- Uncertainty & Bayesian Networks
- · Machine Learning
- NLP & Special Topics

MDPs

Markov Decision Processes

- Planning Under Uncertainty
- Mathematical Framework
- Bellman Equations
- Value Iteration
- Real-Time Dynamic Programming
- Policy Iteration
- Reinforcement Learning

Review: Expectimax

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In pacman, the ghosts act randomly

Can do expectimax search

- Max nodes as in minimax search
 Change and as like min mades.
- Chance nodes, like min nodes, except the outcome is uncertain - take average (expectation) of children
- Calculate expected utilities

Today, we formalize as an Markov Decision Process

- Handle intermediate rewards & infinite plans
- More efficient processing

Walls block the agent's path Agent's actions may go astray: 80% of the time, North action takes the agent North (assuming no wall) 10% - actually go West 10% - actually go East If there is a wall in the chosen direction, the agent stays put Small "living" reward each step Big rewards come at the end Goal: maximize sum of rewards

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 i.e., P(s' | s,a)
 - Also called "the model"
 A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - · Maybe a terminal state
- MDPs: non-deterministic search

Reinforcement learning: MDPs where we don't know the transition or reward functions

Axioms of Probability Theory

- All probabilities between 0 and 1 $0 \le P(A) \le 1$
- Probability of truth and falsity P(true) = 1P(false) = 0.
- The probability of disjunction is: $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Terminology

Marginal Probability

$$p(X = x_i) = \frac{c_i}{X}$$
.

Joint Probability

$$p(X=x_i,Y=y_j)=\frac{n_{ij}}{N}$$

Conditional **Probability**

$$p(Y=y_f|X=x_i)=rac{n_{if}}{c_t}$$
 X value is given

Conditional Probability

- P(A | B) is the probability of A given B
- Assumes:
 - B is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Independence

• *A* and *B* are *independent* iff:

 $P(A \mid B) = P(A)$ These constraints logically equivalent $P(B \mid A) = P(B)$

• Therefore, if A and B are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \wedge B) = P(A)P(B)$$

Conditional Independence A&B not independent, since P(A|B) < P(A) A A A B B B

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that
 - conditioned on the present state,
 - the future is **independent** of the past
- For Markov decision processes, "Markov" means:

 $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$

Infinite Utilities?! • Problem: infinite state sequences have infinite rewards • Solutions: • Finite horizon: • Terminate episodes after a fixed T steps (e.g. life) • Gives nonstationary policies (π depends on time left) • Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low) • Discounting: for $0 < \gamma < 1$ $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$ • Smaller γ means smaller "horizon" – shorter term focus

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s, a) aka T(s,a,s')
 - Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy, π = Function that chooses an action for each state
 - Utility (aka "return") = sum of discounted rewards

Optimal Utilities Define the value of a state s: $V^*(s)$ = expected utility starting in s and acting optimally Define the value of a q-state (s,a): Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally Define the optimal policy: $\pi^*(s)$ = optimal action from state s 8.912 0.812 0.868 +1 -1 t t 0.705 0.655 0.611 0.388

The Bellman Equations

 Definition of "optimal utility" leads to a simple one-step look-ahead relationship between optimal utility values:

(1920-1984

Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Estimates

- Calculate estimates V_k*(s)
 - The optimal value considering only next k time steps (k rewards)
 - As k→∞, V_k approaches the optimal value
- Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work

Value Iteration

- Idea
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration Delot Team* and a Off Recompressor over resolution to see this picture.

Practice: Computing Actions Which action should we chose from state s: • Given optimal values Q? $\arg\max_a Q^*(s,a)$ • Given optimal values V? $\arg\max_a \sum_{s'} T(s,a,s')[R(s,a,s')+\gamma V^*(s')]$ • Lesson: actions are easier to select from Q's!

Convergence

- Define the max-norm: $||U|| = \max_{s} |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem

$$||U^{t+1} - U^t|| < \epsilon$$
, $\Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1 - \gamma)$

I.e. once the change in our approximation is small, it must also be close to correct

Value Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: O(|A|·|S|²)
 - Space: O(|S|)
- Num of iterations
 - \bullet Can be exponential in the discount factor γ

Bellman Equations for MDP₂

- <V, D, Sr, U, s_{0.} γ>
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{R}(s, a, s') + \gamma V^*(s') \right]$$

Bellman Backup (MDP₂)

- Given an estimate of V* function (say V_n)
- Backup V_n function at state s
- calculate a new estimate (V_{n+1}):

$$\begin{array}{rcl} Q_{n+1}(s,a) & = & \sum\limits_{s' \in \mathcal{S}} Pr(s'|s,a) \left[\mathbf{U}\left(s,a,s'\right) + \mathbf{\gamma} V_n(s') \right] \\ V_{n+1}(s) & = & \max\limits_{a \in Ap(s)} \left[Q_{n+1}(s,a) \right] \end{array}$$

- Q_{n+1}(s,a): value/cost of the strategy:
 - execute action a in s, execute π_n subsequently
 - $\pi_n = \operatorname{argmax}_{a \in Ap(s)} Q_n(s,a)$

Value iteration [Bellman'57]

- assign an arbitrary assignment of V₀ to each state.
- repeat
 - for all states s
 compute V_{n+1}(s) by Bellman backup at s.

 Iteration n+1
- until $\max_{s} |V_{n+1}(s) V_n(s)|$ Residual(s)

$\begin{array}{c} \textbf{Policy Computation} \\ \textbf{Optimal policy is stationary and time-independent.} \\ \pi^*(s) &= \underset{a \in Ap(s)}{\operatorname{argmax}} \ Q^*(s,a) \\ &= \underset{a \in Ap(s)}{\operatorname{argmax}} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s,a) \left[\mathbf{v}(s,a,s') + \mathbf{v}V^*(s') \right] \end{array}$

Asynchronous Value Iteration

- States may be backed up in any order
 - instead of an iteration by iteration
- As long as all states backed up infinitely often
 - Asynchronous Value Iteration converges to optimal

Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors

Asynch VI: Real Time Dynamic Programming
[Barto, Bradtke, Singh'95]

- Trial: simulate greedy policy starting from start state; perform Bellman backup on visited states
- RTDP: repeat Trials until value function converges

Comments

- Properties
 - if all states are visited infinitely often then $V_n \rightarrow V^*$
- Advantages
 - Anytime: more probable states explored quickly
- Disadvantages
 - complete convergence can be slow!

Review: Expectimax - What if we don't know what the result of an action will be? E.g., - In solitaire, next card is unknown - In minesweeper, mine locations - In pacman, the ghosts act randomly - Can do expectimax search - Chance nodes, like min nodes, except the outcome is uncertain - Calculate expected utilities - Max nodes as in minimax search - Chance nodes take average (expectation) of value of children - Today, we'll learn how to formalize the underlying problem as a Markov Decision Process

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1}=s'|S_t=s_t,A_t=a_t)$$

Solving MDPs ■ In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal ■ In an MDP, we want an optimal policy □*: S → A ■ A policy □ gives an action for each state ■ An optimal policy maximizes expected utility if followed ■ Defines a reflex agent Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

High-Low as an MDP States: 2, 3, 4, done Actions: High, Low Model: T(s, a, s'): P(s'=4 | 4, Low) = 1/4 P(s'=3 | 4, Low) = 1/4 P(s'=2 | 4, Low) = 1/2 P(s'=done | 4, Low) = 0 P(s'=4 | 4, High) = 1/4 P(s'=3 | 4, High) = 0 P(s'=2 | 4, High) = 0 P(s'=2 | 4, High) = 3/4 ... Rewards: R(s, a, s'): Number shown on s' if s s' 0 otherwise Start: 3

Recap: Defining MDPs

- - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount ©)

MDP quantities so far:

- Policy = Choice of action for each state
- Utility (or return) = sum of discounted rewards

Optimal Utilities Define the value of a state s: $V^*(s)$ = expected utility starting in s and acting optimally Define the value of a q-state (s,a): Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally Define the optimal policy: $\square^*(s)$ = optimal action from state s 8.912 0.812 838.0 +1 -1 t t -1 t

The Bellman Equations

- Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:
- Formally:

$$\begin{split} & V^*(s) = \max_{a} Q^*(s, a) \\ & Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \end{split}$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Why Not Search Trees?

- Why not solve with expectimax?
- Problems:

0.705 0.655 0.611 0.388

- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!

Value Estimates

- Calculate estimates V_k*(s)
 - The optimal value considering only next k time steps (k rewards)
 - $\bullet \;$ As k \square , it approaches the optimal value
- Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work

Value Iteration

- - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- · This is called a value update or Bellman update
- · Repeat until convergence
- · Theorem: will converge to unique optimal values
 - · Basic idea: approximations get refined towards optimal values
 - · Policy may converge long before values do

Example: Value Iteration OutsTree* and a Off Accompressor are received to set this joints.

Practice: Computing Actions which action should we chose from state s: • Given optimal values Q? $\arg\max_{a} Q^*(s,a)$ • Given $G_{\text{peri}}(B_{\text{GIV}}, x_{\text{GIV}})$ $\arg\max_{a} \sum_{a} T(s,a,s')[R(s,a,s')+\gamma V^*(s')]$ • Lesson: actions are easier to select from Q s!

Convergence

- Define the max-norm: $||U|| = \max_{s} |U(s)|$
- Theorem: For any two approximations U and V $||U^{t+1}-V^{t+1}|| \leq \gamma \, ||U^t-V^t||$
 - I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem

$$||U^{t+1} - U^t|| < \epsilon$$
, $\Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1 - \gamma)$

1.e. once the change in our approximation is small, it must also be close to correct

Value Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: $O(|A| \cdot |S|^2)$
 - Space: O(|S|)
- Num of iterations
 - \bullet Can be exponential in the discount factor γ

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy □:
 V=(s) = expected total discounted
 - V[□](s) = expected total discounted rewards (return) starting in s and following □
- Recursive relation (one-step lookahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the Vs for a fixed policy?
- Idea one: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

Idea $V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s,\pi(s),s')[R(s,\pi(s),s') + \gamma V_i^{\pi}(s')]$ whatever)

Policy Iteration

- Problem with value iteration
 - Considering all actions each iteration is slow: takes |A| times longer than policy evaluation
 - But policy doesn't change each iteration, time wasted
- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
 - Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
 - Repeat steps until policy converges

Policy Iteration

- Poincy evaluation. with fixed current poincy □, find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

Poncy improvement, with tixed durines, this the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{\pi_k}(s') \right]$$

Policy Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: $O(|S|^3 + |A| \cdot |S|^2)$
 - Space: O(|S|)
- Num of iterations
 - Unknown, but can be faster in practice
 - · Convergence is guaranteed

Comparison

- In value iteration
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)
- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies
- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often