CSE 473

Automated Planning
Dan Weld

(With slides by UW Al faculty & Dana Nau

I have a plan - a plan that cannot possibly fail.

- Inspector Clousseau

Logistics

¢ HW1 due in one week (Fri 5/4)

— Parts due in between:
* Monday draft answer to problem 1
* Wed give feedback on another person’s answer

Overview

— Introduction & Agents

— Search, Heuristics & CSPs

— Adversarial Search

— Logical Knowledge Representation
— Planning & MDPs

— Reinforcement Learning

— Uncertainty & Bayesian Networks
— Machine Learning

— NLP & Special Topics

Today’s Topics

e Logic for specifying planning domains
¢ Planning graph for computing heuristics
e Compiling planning to SAT

Planning

e Given
— alogical description of the initial situation,
— alogical description of the goal conditions, and
— alogical description of a set of possible actions,

¢ Find
— asequence of actions (a plan of actions) that brings us

from the initial situation to a situation in which the goal
conditions hold.

©D. Weld, D. Fox 5

Simplifying Assumptions

Dynamic

Durative Stochastic

) What action
Partially next?

Observable

Actions

© Daniel S. Weld

Classical Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: —on(x,y), —clear(x), —hand A

holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: —holding(x), —clear(y),
on(x,y), clear(x), handempty

5o
I

pickup(x)
Precond: ble(x), clear(x), h y D
Effects: —ontable(x), —clear(x),

—handempty, holding(x)

=]s]
(=1

putdown(x)
Precond: holding(x)
Effects: —holding(x), ontable(x),
clear(x), handempty

-

Dana Nau: This work is licensed under a Creative Commons License.

Driving

Static facts
(defschema (drive) /—_
iparameters (%v Tz 7d) ‘_/

:precondition (and (vehicle 7v) (at 7v 7s)
(location 72) (locatien 7d)
(road-connected s 7d))
reffect (and (at 7v ?d) (not (at Tv 7s))
(forall (object 7o)
(when (in 7o 7v)
(and (at ?e %v)) (not (at %o ?2))))))

Universally quantified conditional schemata for driving.

Planning vs. Problem-Solving ?

Basic difference: Explicit, logic-based representation
* States/Situations: descriptions of the world by logical formulae
- agent can explicitly reason about the world.

¢ Goal conditions as logical formulae vs. goal test (black box)
- agent can reflect on its goals.

e Operators/Actions: Transformations on logical formulae
- agent can reason about the effects of actions
by inspecting the definition of its operators.

purs

Dana Nau: This work is licensed under a Creative Commons License.

Forward World-Space Search

—
Initial ~
State

Goal
State

Daniel S. Weld 11

Heuristics for State-Space Search

e Count number of false goal propositions in current state
Admissible?
NO

¢ Subgoal independence assumption:

— Cost of solving conjunction is sum of cost of solving each subgoal
independently

— Optimistic: ignores negative interactions
— Pessimistic: ignores redundancy

— Admissible? No
— Can you make this admissible?

©D. Weld, D. Fox 12

Heuristic Generation Il

unstack(x,y)

Precond:

Effects: —on(x,y), —clear(x), —~handempty,
holding(x), clear(y)

stack(x,y)
Precond: heldinsbdraleast Delete preconditions
Effects: —holding(x), —clear(y),

on(xy), clear(x), handempty Solve relaxed planning

pickup(x) problem
Precond
Effects: —ontable(x), —clear(x), Admissable?
—handempty, holding(x)
putdown(x)
Precond

Effects: —holding(x), ontable(x),
clear(x), handempty

Dana Nau: This work is licensed under a Creative Commons License.

Heuristic Generation Il

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects:
holding(x), clear(y)
stack(x,y) .
Precond: holding(x), clear(y) Delete negative effects
Effects: —thotdingtxl;=rctearty)
on(xy), clear(x), handempty Solve relaxed planning
pickup(x) problem
Precond: ble(x), clear(x), hand y
Effects: IR Admissable?
—handemptyy holding(x)
putdown(x)
Precond: holding(x)
Effects: ontable(x),

clear(x), handempty

Dana Nau: This work is licensed under a Creative Commons License.

Planning Graph: Basic idea

¢ Construct a planning graph: encodes
constraints on possible plans

¢ Use this planning graph to compute an
informative heuristic (Forward A*)

¢ Planning graph can be built for each problem
in polynomial time

D. Weld, D. Fox 15

& & & &
S S S S
K B By By
2 5 & &
o § § I3
(él o (0 2] <° 2} (oq
< 5 < & q & 9
level PO & level P1 £ level P2 & level P3
4 & &
level A1 level A2 level A3

PG Example

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))

Action(Eat(Cake),
PRECOND: Have(Cake)

EFFECT: —-Have(Cake) A Eaten(Cake))

Action(Bake(Cake),
PRECOND: - Have(Cake)

EFFECT: Have(Cake))

Note: a few noops missing.for clarity 16
PG Example
Sp Ao Sy
Have{Cake)
—iEaten(Cake)

Create level 0 from initial problem state.

Graph Expansion

Proposition level O
initial conditions

Action level i
no-op for each proposition at level i-1
action for each operator instance whose

preconditions exist at level i-1
Proposition level i
effects of each no-op and action at level i

No-op-action(P),
PRECOND: P
EFFECT: P

Have a no-op action for each ground fact

©D. Weld, D. Fox 21

PG Example

Sp Ao Sy

—Eaten(Cake)

Add all applicable actions.
Add all effects to the next state.

Have(Cake)
_— THave(Cake)
Eat{Cake)

Eaten(Cake)

PG Example

S 0 A 0 S]
Have(Cake) =) Have{Cake)
— THave(Cake)
T~ Eaten(Cake)
—1Eaten(Cake) F —1Eaten(Cake)

Add persistence actions (aka no-ops) to
map all literals in state S; to state S;,;.

Mutual Exclusion

Two propositions are mutex if
«one is the negation of the other

24

Mutual Exclusion

Two proposition are mutex if

«one is the negation of the other
«all ways of achieving them are mutex

=
——

T —

Mutual Exclusion

Two actions are mutex if
« they have mutex preconditions
« one clobbers the other’s preconditions or effects

Two proposition are mutex if

+one is the negation of the other
«all ways of achieving them are mutex

25

Mutual Exclusion

Light-fuse(match, bomb)
Precond: lit(match), holding(bomb)
Effects: will-explode(bomb)

Extinguish(match)
Precond: lit(match)
Effects: =lit(match)

/

-

If Result of N>1 Actions is Ambiguous...

Mark
Them

PG Example

50 AD 31

Have(Cake) = Have(Cake)
_— THave(Cake)
Eat{Cake) <

T~ . Eaten{Cake)

—Eaten(Cake) & —Eaten(Cake)

Identify mutual exclusions between actions
and literals based on potential conflicts.

Mutex
Instantaneo
vs.
Durative
What action
next?
Actions
© Daniel S. Weld
Cake example
50 AD 31
Have(Cake) = Have(Cake)
" —Have|Cake)
[Eat(Cake) {H""‘-\-\.
- Eaten{Cake)
—Eaten(Cake) =) —Eaten{Cake)

* Level S, contains all literals that might result from
picking any subset of actions in A,

— Conflicts between literals that can’t occur together (as a consequence of
selection action) are represented by mutex links.

— S1 defines multiple states and the mutex links are the constraints that
define this set of states.

Cake example

S Ay S Ay Sz
Bake(Cake)
Have(Caks) o Have(Cake) = Have(Cake)
—1Have(Cake) £ —Have(Cake)
Eat(Cake) Eat(Cake)
Eaten(Cake) = Eaten(Cake)
— Edten(Cake) =) — Eaten(Cake) = —Eaten(Cake)

Observation 1

P P P P

ar ~q ~q ~q
ar ar

Literals monotonically increase

(always carried forward by no-ops)

©D. Weld, D. Fox 34

Observation 2

Actions monotonically increase

©D. Weld, D. Fox 35

Observation 3

mutex relationships between literals monotonically decrease

© D. Weld, D. Fox 36

Observation 4
S
NE e e

5

Mutex relationships between actions monotonically decrease

D. Weld, D. Fox 37

Observation 5

Planning Graph ‘levels off".

¢ After some time k, all levels are identical
— Because it’s a finite space & montonicity

© D. Weld, D. Fox 38

Properties of Planning Graph

e If goal is absent from last level?
— Then goal cannot be achieved!

¢ If there exists a plan to achieve goal?
— Then goal is present in the last level &
— No mutexes between conjuncts

e If goalis present in last level (w/ no mutexes) ?
— There still may not exist any viable plan

D. Weld, D. Fox 39

Heuristics based on Planning Graph

¢ Construct planning graph starting from s

¢ h(s) = level at which goal appears non-mutex
— Admissible?
— YES

©D. Weld, D. Fox 40

Planning Graph is Optimistic

Suppose you want to prepare a surprise dinner for your sleeping sweetheart
s, = {garbage, cleanHands, quiet}
g = {dinner, present, —garbage}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none —garbage, —cleanHands
dolly() none —garbage, —quiet

Also have persistence actions: one for each literal

Example (continued)

tate-] |0‘ac.~ level 1 | state-1 |1|
* Recall the goal is garb {\@ garb
— {—garbage, dinner, present} /] “‘::x_
* Note that in state-level 1, -
— All of them are there cleanH . — - cleanH
— None are mutex with each other \ —cleanH
¢ Thus, there’s a chance that a plan exists \

— Butno actual plan does... quiet i
— Pairwise, the goals are consistent
— But no consistent way to achieve all three

quiet =]
‘quiel< /
— Planning graph ~ k consistency

But with no fixed limit on k

—dinner

—present —presen

Dana Nau: This work is licensed under a Creative Commons License.

Fast-Forward (FF)

e Fastest classical planner ~2009

e State space local search
— Guided by relaxed planning graph
— Full best-first search to escape plateaus
— A few other bells and whistles...

s @/ Q? o
| @i@ o ©

Today’s Topics

¢ Logic for specifying planning domains
¢ Planning graph for computing heuristics
e Compiling planning to SAT

Fluent

e Ground literal whose truth value may change
over time

¢ Eg, at(robbie, location5)
¢ Not robot(robbie)

J:-« Move
o
e e e e
loc5 loc7 loc5 loc7
T0 T1

Encoding Fluents in Logic

e at(robbie, location7, timel)

& &

loc5 loc7 loc5 loc7

T0 Tl

Encoding Initial Conditions & Goals

Suppose we only cared about 1-step plans
State desired end conditions:

O = at(robbie, loc5, time0) A at(robbie, loc7, timel)
Is @ satisfiable?

Is PA Q satisfiable?

e e
—o————o
loc5 loc7 loc5 loc7

T0 Tl

Encoding Action Effects in Logic

move(r, 11, 12)
Precond: robot(r), at(r,11), ...
Effects: at(r,12)

Vvr, 11,12, t move(r,l1,12,t) => at(r, 12, t+1)

Vr, 11,12, t move(r,l1,12,t) => at(r, |, t)
—move(r,11,12,t) v at(r, |, t)

i« Move
o 3 e
—o—o —o——e
loc5 loc7 loc5 loc7
T1 T2

Compiling to Propositional Logic

move(r, /11, 12)
Precond: robot(r), at(r,1), ...
Effects: at(r,12)

Vv, 11,12, t move(r,I11,12,t) => at(r, 12, t+1)

Infinite worlds: impossible

But suppose only 2 robots (robbie, sue), 2 locations, 1 action time

move(robbie,loc5,loc7,1) => at(robbie, loc7, 2) A
move(robbie,loc7,loc5,1) => at(robbie, loc5, 2) A
move(sue,loc5,loc7,1) => at(sue, loc7, 2) A
move(sue,loc7,loc5,1) => at(sue, loc5, 2)

Overall Approach

e A bounded planning problem is a pair (Pn):
— Pis a planning problem; n is a positive integer
— Any solution for P of length n is a solution for (Pn)

* Planning algorithm:

e Do iterative deepening like we did with Graphplan:
—forn=0,1,2,..,
* encode (Pn) as a satisfiability problem ®
« if @ is satisfiable, then

— From the set of truth values that satisfies ®, a solution plan can be
constructed, so return it and exit

Dana Nau: This work is licensed under a Creative Commaons License.
L e e

Encoding Planning Problems

e Encode (Pn) as a formula ® such that
1= (0, ay, ..., ,_4) is @ solution for (Bn) if and only if
@ can be satisfied in a way that makes the fluents a, ..., a,, true

e Let
— A ={all actions in the planning domain}
— S ={all states in the planning domain}
— L ={all literals in the language}

e @ is the conjunct of many other formulas ...

Formulas in @
¢ Formula describing the initial state:
IN\Uo [1esgt A [\i—ly |1 L—5y}
¢ Formula describing the goal:
NG e a N [e g

¢ Forevery action a in A, formulas describing what changes a would make if it
were the i"th step of the plan:

-a = /\(p,. | p € Precond(a)} A /\(e,,1 | e e Effects(a)}

* Complete exclusion axiom:
— For all actions a and b, formulas saying they can’t occur at the same time
—a;v—b;
— this guarantees there can be only one action at a time

* Isthis enough?

Dana Nau: This work is licensed under a Creative Commons License.

Dana Nau: This work is licensed under a Creative Commons License.

Frame Axioms

* frame axioms:

— Formulas describing what doesn’t change
between steps i and i+1

e Several ways to write these
e One way: explanatory frame axioms

— One axiom for every literal /
— Says that if / changes between s; and s,,,,
then the action at step i must be responsible:

(=l Al = Vyinala; | | € effects*(a)})
A A=l = Vi ala; [1 € effects™(a)})

Dana Nau: This work is licensed under a Creative Commons License.

Example
¢ Planning domain:
— one robot rl
— two adjacent locations I1, 12
— one operator (move the robot)

¢ Encode (Pn) wheren=1

— Initial state: {at(r1,11)}

Encoding: at(r1,11,0) A —at(r1,12,0)
— Goal: {at(r1,12)}
Encoding: at(r1,12,1) A —at(rl,l1,1)

— Operator: see next slide

Dana Nau: This work is licensed under a Creative Commons License.

Example (continued)

e Locations: 11, 12
* Robots: rl

e Operator: move(r : robot, | : location, I' : location)
precond: at(r,l)
effects: at(r,I"), —at(r,l)

Encoding:
move(rl,l1,12,0) = at(r1,11,0) A at(r1,12,1) A —at(r1,|1,1)
move(rl,|2,11,0) = at(r1,12,0) A at(r1,I1,1) A —at(r1,12,1)

Dana Nau: This work is licensed under a Creative Commaons License.

Extracting a Plan

e Suppose we find an assignment of truth values that
satisfies @.

— This means P has a solution of length n

e For i=1,...,n, there will be exactly one action a such
that g, = true

— This is the i'th action of the plan.

e Example (from the previous slides):
— @ can be satisfied with move(rl,11,12,0) = true
— Thus {move(r1,l1,12,0)) is a solution for (P,0)
* It’s the only solution - no other way to satisfy ®

Dana Nau: This work is licensed under a Creative Commons License.

Example (continued)
¢ Operator: move(r,l,I')
precond: at(r,l)
effects: at(r,I'), —at(r,l)
Encoding:

move(rl,|1,12,0) = at(r1,I1,0) A at(r1,12,1) A —at(r1,I1,1)
move(rl,|2,11,0) = at(r1,12,0) A at(r1,I1,1) A —at(r1,12,1)
move(rd,l1,11,0) = at(r1,l1,0) A at(r1,l1,1) A —at(r1,I1,1)| contradictions|
move(r1,12,12,0) = at(r1,12,0) A at(r1,12,1) A —at(r1,12,1)| (€asy to detect
move(11,r1,12,0) = ...
move(12,11,r1,0) = ... i
move(11,12,r1,0) = ... nonsensical
move(12,11,r1,0) = ...

* How to avoid generating the last four actions?

— Assign data types to the constant symbols
like we did for state-variable representation

Dana Nau: This work is licensed under a Creative Commons License.

Example (continued)

¢ Complete-exclusion axiom:
—move(rl,I1,12,0) v —move(r1,I2,I1,0)

¢ Explanatory frame axioms:
—at(r1,11,0) A at(r1,l1,1) = move(r1,|2,11,0)
—at(r1,12,0) A at(r1,12,1) = move(r1,I1,12,0)
at(r1,I1,0) A —at(r1,l1,1) = move(ri,1,12,0)
at(r1,12,0) A —at(r1,12,1) = move(rl,I2,I1,0)

Dana Nau: This work is licensed under a Creative Commons License.

Planning
* How to find an assignment of truth values that satisfies ®?
— Use a satisfiability algorithm

* Example: the Davis-Putnam algorithm

— First need to put @ into conjunctive normal form
eg,®P=DA(-DVAvV-B)A(-Dv-Av-B)A(-Dv—-AvB)AA

— Write @ as a set of clauses (disjuncts of literals)
o ={{D}, {-D,A, -B}, {-D,—-A, =B}, {-D, —A, B}, {A}}

— Two special cases:
o If ® = J then @ is always true
o Ifd={.,J,..} then @ is always false (hence unsatisfiable)

Dana Nau: This work is licensed under a Creative Commons License.

