CSE 473 Automated Planning

Dan Weld

(With slides by UW AI faculty & Dana Nau

I have a plan - a plan that cannot possibly fail.

- Inspector Clousseau

Logistics

- HW1 due in one week (Fri 5/4)
 - Parts due in between:
 - Monday draft answer to problem 1
 - Wed give feedback on another person's answer

Overview

- Introduction & Agents
- Search, Heuristics & CSPs
- Adversarial Search
- Logical Knowledge Representation
- Planning & MDPs
- Reinforcement Learning
- Uncertainty & Bayesian Networks
- Machine Learning
- NLP & Special Topics

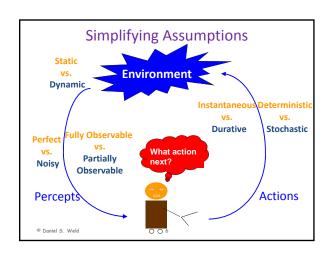
Today's Topics

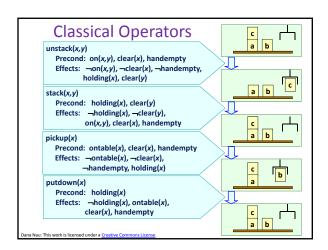
- Logic for specifying planning domains
- Planning graph for computing heuristics
- Compiling planning to SAT

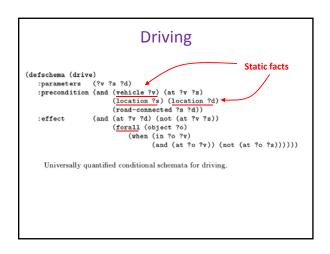
Planning

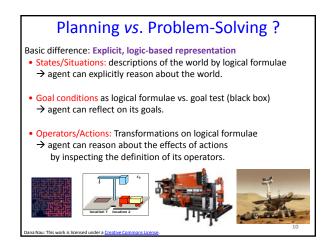
- Given
 - a logical description of the initial situation,
 - a logical description of the goal conditions, and
 - a logical description of a set of possible actions,
- Find
 - a sequence of actions (a plan of actions) that brings us from the initial situation to a situation in which the goal conditions hold.

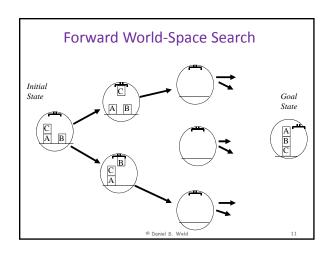
© D. Weld, D. Fox











Heuristics for State-Space Search

• Count number of false goal propositions in current state
Admissible?
NO

• Subgoal independence assumption:

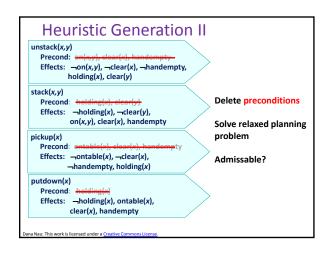
- Cost of solving conjunction is sum of cost of solving each subgoal independently

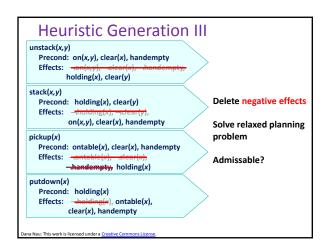
- Optimistic: ignores negative interactions

- Pessimistic: ignores redundancy

- Admissible? No

- Can you make this admissible?

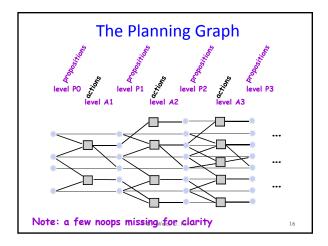


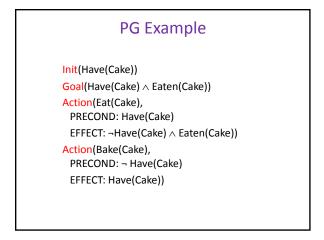


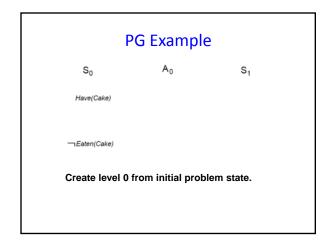
Planning Graph: Basic idea

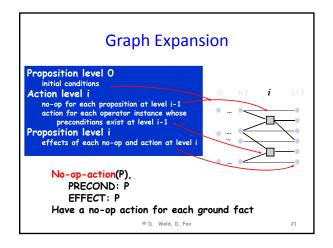
- Construct a planning graph: encodes constraints on possible plans
- Use this planning graph to compute an informative heuristic (Forward A*)
- Planning graph can be built for each problem in polynomial time

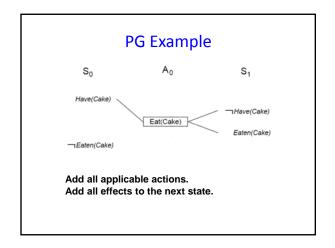
© D. Weld, D. Fox

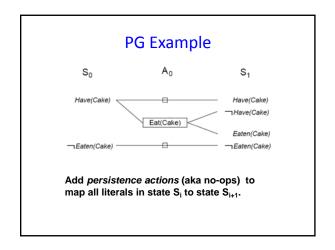


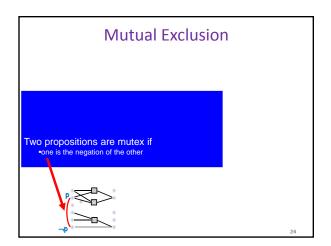


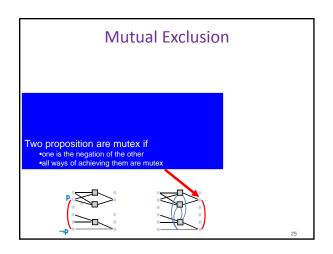


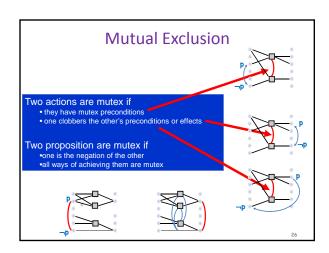


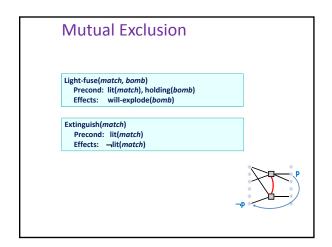


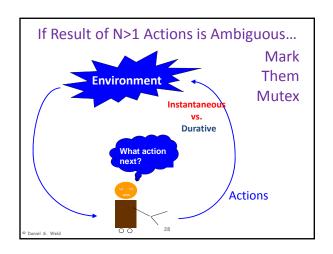


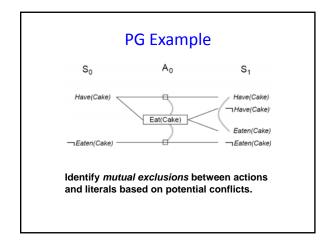


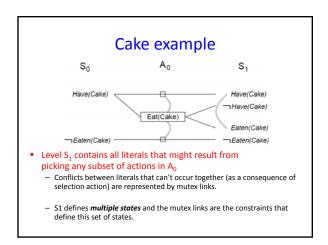


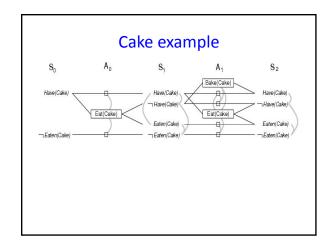


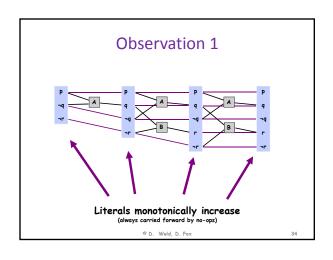


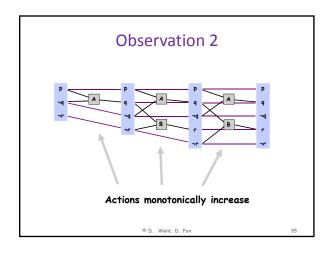


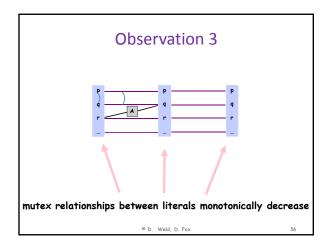


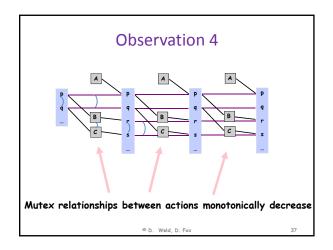












Observation 5

Planning Graph 'levels off'.

- After some time k, all levels are identical
 - Because it's a finite space & montonicity

© D. Weld, D. Fox

Properties of Planning Graph

- If goal is absent from last level?
 - Then goal cannot be achieved!
- If there exists a plan to achieve goal?
 - Then goal is present in the last level &
 - No mutexes between conjuncts
- If goal is present in last level (w/ no mutexes)?
 - There still may not exist any viable plan

© D. Weld, D. Fox

39

Heuristics based on Planning Graph

- Construct planning graph starting from s
- h(s) = level at which goal appears non-mutex
 - Admissible?
 - YES

© D. Weld, D. Fox

Planning Graph is Optimistic

Suppose you want to prepare a surprise dinner for your sleeping sweetheart

s₀ = {garbage, cleanHands, quiet}

 $g = \{dinner, present, \neg garbage\}$

 Action
 Preconditions
 Effects

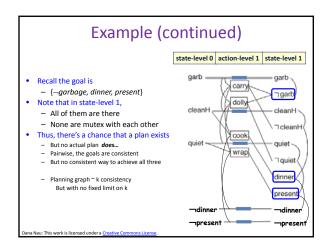
 cook()
 cleanHands
 dinner

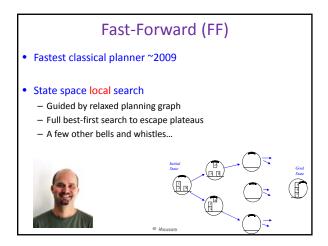
 wrap()
 quiet
 present

 carry()
 none
 —garbage, —cleanHands

 dolly()
 none
 —garbage, —quiet

Also have persistence actions: one for each literal



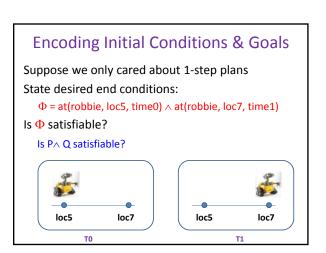


Today's Topics

- Logic for specifying planning domains
- Planning graph for computing heuristics
- Compiling planning to SAT

Fluent • Ground literal whose truth value may change over time • Eg, at(robbie, location5) • Not robot(robbie) Move loc5 loc7 T0 T1

• at(robbie, location7, time1) • loc5 loc7 • ro



T2

Compiling to Propositional Logic

move(r, l1, l2)
Precond: robot(r), at(r,l1), ...
Effects: at(r,l2)

 $\forall r, |1, |2, t \mod(r, |1, |2, t) => at(r, |2, t+1)$

Infinite worlds: impossible

But suppose only 2 robots (robbie, sue), 2 locations, 1 action time

move(robbie,loc5,loc7,1) => at(robbie, loc7, 2) \land move(robbie,loc7,loc5,1) => at(robbie, loc5, 2) \land move(sue,loc5,loc7,1) => at(sue, loc7, 2) \land move(sue,loc7,loc5,1) => at(sue, loc5, 2)

Overall Approach

- A bounded planning problem is a pair (P,n):
 - − P is a planning problem; n is a positive integer
 - Any solution for P of length n is a solution for (P,n)
- Planning algorithm:

T1

- Do iterative deepening like we did with Graphplan:
 - for n = 0, 1, 2, ...,
 - encode (P,n) as a satisfiability problem Φ
 - if Φ is satisfiable, then
 - From the set of truth values that satisfies Φ, a solution plan can be constructed, so return it and exit

ana Nau: This work is licensed under a <u>Creative Commons License</u>

Encoding Planning Problems

• Encode (P,n) as a formula Φ such that

 $\pi = \langle a_0, a_1, ..., a_{n-1} \rangle$ is a solution for (P, n) if and only if Φ can be satisfied in a way that makes the fluents $a_0, ..., a_{n-1}$ true

- Let
 - A = {all actions in the planning domain}
 - − S = {all states in the planning domain}
 - L = {all literals in the language}
- Φ is the conjunct of many other formulas ...

Dana Nau: This work is licensed under a Creative Commons License

Formulas in Φ

Formula describing the initial state:

$$\bigwedge\{I_0\ /\ I\in s_0\}\ \wedge\ \bigwedge\{\neg I_0\ /\ I\in L-s_0\}$$

• Formula describing the goal:

$$\bigwedge \{l_n \mid l \in g^*\} \land \bigwedge \{\neg l_n \mid l \in g^-\}$$

- For every action a in A, formulas describing what changes a would make if it
 were the i'th step of the plan:
 - $-a_i \Rightarrow \bigwedge \{p_i \mid p \in \mathsf{Precond}(a)\} \land \bigwedge \{e_{i+1} \mid e \in \mathsf{Effects}(a)\}$
- Complete exclusion axiom:
 - $-\,$ For all actions a and b , formulas saying they can't occur at the same time $\neg\,a_i \vee \neg\,b_i$
 - this guarantees there can be only one action at a time
- Is this enough?

ana Nau: This work is licensed under a <u>Creative Commons License</u>

Frame Axioms

- Frame axioms:
 - Formulas describing what doesn't change between steps i and i+1
- Several ways to write these
- One way: explanatory frame axioms
 - One axiom for every literal I
 - Says that if I changes between s_i and s_{i+1} , then the action at step i must be responsible:

$$(\neg I_i \land I_{i+1} \Rightarrow \bigvee_{a \text{ in } A} \{a_i \mid I \in \text{effects}^+(a)\})$$

 $\land (I_i \land \neg I_{i+1} \Rightarrow \bigvee_{a \text{ in } A} \{a_i \mid I \in \text{effects}^-(a)\})$

Dana Nau: This work is licensed under a <u>Creative Commons License</u>.

Example

- Planning domain:
 - one robot r1
 - two adjacent locations I1, I2
 - one operator (move the robot)
- Encode (P,n) where n=1

– Initial state: {at(r1,l1)}

Encoding: $at(r1,l1,0) \land \neg at(r1,l2,0)$

– Goal: {at(r1,l2)}

Encoding: $at(r1,l2,1) \land \neg at(r1,l1,1)$

Operator: see next slide

Dana Naus This work is licensed under a Creative Commons License

```
Example (continued)
```

Operator: move(r,l,l') precond: at(r,l)

effects: at(r,l'), $\neg at(r,l)$

Encoding:

```
\begin{split} & \mathsf{move}(r1,\!11,\!12,\!0) \Rightarrow \mathsf{at}(r1,\!11,\!0) \land \mathsf{at}(r1,\!12,\!1) \land \neg \mathsf{at}(r1,\!11,\!1) \\ & \mathsf{move}(r1,\!12,\!11,\!0) \Rightarrow \mathsf{at}(r1,\!12,\!0) \land \mathsf{at}(r1,\!11,\!1) \land \neg \mathsf{at}(r1,\!12,\!1) \\ & \mathsf{move}(r1,\!11,\!11,\!0) \Rightarrow \mathsf{at}(r1,\!11,\!0) \land \mathsf{at}(r1,\!11,\!1) \land \neg \mathsf{at}(r1,\!11,\!1) \Big] \quad \textbf{contradictions} \end{split}
```

move(I2,I1,r1,0) ⇒ ...

 $move(I1,I2,r1,0) \Rightarrow ...$ nonsensical

move(I2,I1,r1,0) ⇒ ...

- How to avoid generating the last four actions?
 - Assign data types to the constant symbols like we did for state-variable representation

Dana Naus This work is licensed under a Creative Commons License

Example (continued)

- Locations: 11, 12Robots: r1
- Operator: move(r : robot, I : location, I' : location)

precond: at(r,l)effects: at(r,l'), $\neg at(r,l)$

Encoding:

$$\begin{split} &\text{move}(\text{r1,I1,I2,0}) \Rightarrow \text{at}(\text{r1,I1,0}) \land \text{at}(\text{r1,I2,1}) \land \neg \text{at}(\text{r1,I1,1}) \\ &\text{move}(\text{r1,I2,I1,0}) \Rightarrow \text{at}(\text{r1,I2,0}) \land \text{at}(\text{r1,I1,1}) \land \neg \text{at}(\text{r1,I2,1}) \end{split}$$

Dana Nau: This work is licensed under a <u>Creative Commons License</u>

Example (continued)

- Complete-exclusion axiom:
 - \neg move(r1,l1,l2,0) $\lor \neg$ move(r1,l2,l1,0)
- Explanatory frame axioms:

$$\begin{split} &\neg \mathsf{at}(\mathsf{r1},\mathsf{11},0) \wedge \mathsf{at}(\mathsf{r1},\mathsf{11},1) \Rightarrow \mathsf{move}(\mathsf{r1},\mathsf{12},\mathsf{11},0) \\ &\neg \mathsf{at}(\mathsf{r1},\mathsf{12},0) \wedge \mathsf{at}(\mathsf{r1},\mathsf{12},1) \Rightarrow \mathsf{move}(\mathsf{r1},\mathsf{11},\mathsf{12},0) \\ &\mathsf{at}(\mathsf{r1},\mathsf{11},0) \wedge \neg \mathsf{at}(\mathsf{r1},\mathsf{11},1) \Rightarrow \mathsf{move}(\mathsf{r1},\mathsf{11},\mathsf{12},0) \\ &\mathsf{at}(\mathsf{r1},\mathsf{12},0) \wedge \neg \mathsf{at}(\mathsf{r1},\mathsf{12},1) \Rightarrow \mathsf{move}(\mathsf{r1},\mathsf{12},\mathsf{11},0) \end{split}$$

Dana Nau: This work is licensed under a Creative Commons License.

Extracting a Plan

- Suppose we find an assignment of truth values that satisfies $\Phi.$
 - This means P has a solution of length n
- For *i*=1,...,*n*, there will be exactly one action *a* such that *a_i* = *true*
 - This is the *i*'th action of the plan.
- Example (from the previous slides):
 - Φ can be satisfied with move(r1,l1,l2,0) = true
 - Thus $\langle move(r1,l1,l2,0) \rangle$ is a solution for (P,0)
 - It's the only solution no other way to satisfy Φ

Dana Nau: This work is licensed under a <u>Creative Commons License</u>

Planning

- How to find an assignment of truth values that satisfies Φ ?
 - Use a satisfiability algorithm
- Example: the *Davis-Putnam* algorithm
 - $\begin{array}{l} \text{ First need to put } \Phi \text{ into conjunctive normal form} \\ e.g., \ \Phi D \wedge (\neg D \vee A \vee \neg B) \wedge (\neg D \vee \neg A \vee \neg B) \wedge (\neg D \vee \neg A \vee B) \wedge A \end{array}$
 - $\begin{array}{lll} & \text{Write } \Phi \text{ as a set of } \textit{clauses} \text{ (disjuncts of literals)} \\ \Phi = \{ \{D\}, & \{\neg D, A, \neg B\}, & \{\neg D, \neg A, \neg B\}, & \{\neg D, \neg A, B\}, & \{A\}\} \end{array}$
 - Two special cases:
 - If Φ = \varnothing then Φ is always true
 - If Φ = {..., \varnothing , ...} then Φ is always false (hence unsatisfiable)

Dana Nau: This work is licensed under a <u>Creative Commons License</u>