
4/9/2012

1

CSE 473: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Space of Search Strategies

 Blind Search
 DFS, BFS, IDS

 Informed Search

2

Informed Search
 Systematic: Uniform cost, greedy, A*, IDA*

 Stochastic: Hill climbing w/ random walk & restarts

 Constraint Satisfaction
 Backtracking=DFS, FC, k-consistency

 Adversary Search

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of triplesfunction from states to lists of triples

(state, action, cost)

 Start state
 Goal test

Recap: Constraint Satisfaction
 Kind of search in which
 States are factored into sets of variables

 Search = assigning values to these variables

 Goal test is encoded with constraints
  Gives structure to search space

4

 Gives structure to search space

 Exploration of one part informs others

 Special techniques add speed
 Propagation

 Variable ordering

 Preprocessing

Constraint Satisfaction Problems

 Subset of search problems

 State is defined by State is defined by
 Variables Xi with values from a

 Domain D (often D depends on i)

 Goal test is a set of constraints

Real-World CSPs

 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when

and where?
 Hardware configuration
 Gate assignment in airports Gate assignment in airports
 Transportation scheduling
 Factory scheduling
 Fault diagnosis
 … lots more!

 Many real-world problems involve
real-valued variables…

4/9/2012

2

Chinese Food, Family Style
 Suppose k people…

 Variables & Domains?

 Constraints?

7

Factoring States
 Model state’s (independent) parts, e.g.

Suppose every meal for n people

Has n dishes plus soup

 Soup =
Meal 1 =

8

Meal 1 =
Meal 2 =

…
Meal n =

Chinese Constraint Network

Soup

Total Cost

Chicken
DishAppetizer

Must be
Hot&Sour

No
Peanuts

9

< $40

Vegetable

RiceSeafood

Pork Dish No
Peanuts

Not
Chow Mein

Not Both
Spicy

Crossword Puzzle

 Variables & domains?

 Constraints?

10

Standard Search Formulation

• States are defined by the values assigned so far

• Initial state: the empty assignment, {}

• Successor function:
• assign value to an unassigned variable

• Goal test:
• the current assignment is complete &
• satisfies all constraints

Backtracking Example

4/9/2012

3

Backtracking Search

 Note 1: Only consider a single variable at each point
 Variable assignments are commutative, so fix ordering of variables

I.e., [WA = red then NT = blue] same as

[NT = blue then WA = red][]

 What is branching factor of this search?

Backtracking Search

Note 2: Only allow legal assignments at each point

 I.e. Ignore values which conflict previous assignments

 Might need some computation to eliminate such conflicts

 “Incremental goal test”

“Backtracking Search”

Depth-first search for CSPs with these two ideas

 One variable at a time, fixed order

 Only trying consistent assignments

Is called “Backtracking Search”
 Basic uninformed algorithm for CSPs

 Can solve n-queens for n  25

Backtracking Search

 What are the choice points?

Improving Backtracking

 General-purpose ideas give huge gains in
speed

 Ordering:
 Which variable should be assigned next?c a ab e s ou d be ass g ed e t

 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

Forward Checking

 Idea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

 Idea: Terminate when any variable has no legal values

WA
SA

NT Q

NSW

V

4/9/2012

4

Forward Checking

Row 1

Row 2

Row 3

QA QB QC QD

21

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3

QA QB QC QD

22

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Prune inconsistent values

QA QB QC QD

23

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Where can QB Go?

QA QB QC QD

24

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3 Q

QA QB QC QD

Prune inconsistent values

25

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Where can QB Go?

QA QB QC QD

26

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

4/9/2012

5

Forward Checking
Cuts the Search Space

4

16

27

16

64

256

Are We Done?

28

Constraint Propagation

 Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

WA
SA

NT Q

NSW

V

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

 Simplest form of propagation makes each arc consistent
 X � Y is consistent iff for every value x there is some allowed y

WA
SA

NT Q

NSW

V

• If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• What’s the downside of arc consistency?
• Can be run as a preprocessor or after each assignment

Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]

Limitations of Arc Consistency

 After running arc
consistency:
 Can have one solution

left

 Can have multiple
solutions left

 Can have no solutions
left (and not know it)

What went
wrong here?

4/9/2012

6

K-Consistency*

 Increasing degrees of consistency
 1-Consistency (Node Consistency):

Each single node’s domain has a value
which meets that node’s unary
constraints

 2-Consistency (Arc Consistency): For y (y)
each pair of nodes, any consistent
assignment to one can be extended to
the other

 K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

 Higher k more expensive to compute
 (You need to know the k=2 algorithm)

Ordering: Minimum Remaining Values

 Minimum remaining values (MRV):
 Choose the variable with the fewest legal values

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Degree Heuristic

 Tie-breaker among MRV variables
 Degree heuristic:
 Choose the variable participating in the most

constraints on remaining variables

 Why most rather than fewest constraints?

Ordering: Least Constraining Value

 Given a choice of variable:
 Choose the least constraining

value
 The one that rules out the

fewest values in the remaining
variablesvariables

 Note that it may take some
computation to determine this!

 Why least rather than most?

 Combining these heuristics
makes 1000 queens feasible

Problem Structure
 Tasmania and mainland are

independent subproblems

 Identifiable as connected
components of constraint
graph

 Suppose each subproblemSuppose each subproblem
has c variables out of n total

 Worst-case solution cost is
O((n/c)(dc)), linear in n

 E.g., n = 80, d = 2, c =20

 280 = 4 billion years at 10
million nodes/sec

 (4)(220) = 0.4 seconds at 10
million nodes/sec

Tree-Structured CSPs

 Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes
it in the ordering

 For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2)

4/9/2012

7

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can
be solved in O(n d2) time!
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to logical and probabilistic
reasoning: an important example of the relation between
syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors'
domains

 Cutset conditioning: instantiate (in all ways) a set of
variables such that the remaining constraint graph is a tree

 Cutset size c gives runtime O((dc) (n-c) d2), very fast for
small c

Iterative Algorithms for CSPs

 Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

 To apply to CSPs:
 Allow states with unsatisfied constraints

O t i i bl l Operators reassign variable values

 Variable selection: randomly select any conflicted
variable

 Value selection by min-conflicts heuristic:
 Choose value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

 The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

Summary
 CSPs are a special kind of search problem:

 States defined by values (domains) of a fixed set of variables

 Goal test defined by constraints on variable values

 Backtracking = DFS - one legal variable assigned per node

 Variable ordering and value selection heuristics help

 Forward checking prevents assignments that fail later Forward checking prevents assignments that fail later

 Constraint propagation (e.g., arc consistency)
 does additional work to constrain values and detect inconsistencies

 Constraint graph representation
 Allows analysis of problem structure

 Tree-structured CSPs can be solved in linear time

 Iterative min-conflicts is usually effective in practice
 Local (stochastic) search

