
4/9/2012

1

CSE 473: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Space of Search Strategies

 Blind Search
 DFS, BFS, IDS

 Informed Search

2

Informed Search
 Systematic: Uniform cost, greedy, A*, IDA*

 Stochastic: Hill climbing w/ random walk & restarts

 Constraint Satisfaction
 Backtracking=DFS, FC, k-consistency

 Adversary Search

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of triplesfunction from states to lists of triples

(state, action, cost)

 Start state
 Goal test

Recap: Constraint Satisfaction
 Kind of search in which
 States are factored into sets of variables

 Search = assigning values to these variables

 Goal test is encoded with constraints
 Gives structure to search space

4

 Gives structure to search space

 Exploration of one part informs others

 Special techniques add speed
 Propagation

 Variable ordering

 Preprocessing

Constraint Satisfaction Problems

 Subset of search problems

 State is defined by State is defined by
 Variables Xi with values from a

 Domain D (often D depends on i)

 Goal test is a set of constraints

Real-World CSPs

 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when

and where?
 Hardware configuration
 Gate assignment in airports Gate assignment in airports
 Transportation scheduling
 Factory scheduling
 Fault diagnosis
 … lots more!

 Many real-world problems involve
real-valued variables…

4/9/2012

2

Chinese Food, Family Style
 Suppose k people…

 Variables & Domains?

 Constraints?

7

Factoring States
 Model state’s (independent) parts, e.g.

Suppose every meal for n people

Has n dishes plus soup

 Soup =
Meal 1 =

8

Meal 1 =
Meal 2 =

…
Meal n =

Chinese Constraint Network

Soup

Total Cost

Chicken
DishAppetizer

Must be
Hot&Sour

No
Peanuts

9

< $40

Vegetable

RiceSeafood

Pork Dish No
Peanuts

Not
Chow Mein

Not Both
Spicy

Crossword Puzzle

 Variables & domains?

 Constraints?

10

Standard Search Formulation

• States are defined by the values assigned so far

• Initial state: the empty assignment, {}

• Successor function:
• assign value to an unassigned variable

• Goal test:
• the current assignment is complete &
• satisfies all constraints

Backtracking Example

4/9/2012

3

Backtracking Search

 Note 1: Only consider a single variable at each point
 Variable assignments are commutative, so fix ordering of variables

I.e., [WA = red then NT = blue] same as

[NT = blue then WA = red][]

 What is branching factor of this search?

Backtracking Search

Note 2: Only allow legal assignments at each point

 I.e. Ignore values which conflict previous assignments

 Might need some computation to eliminate such conflicts

 “Incremental goal test”

“Backtracking Search”

Depth-first search for CSPs with these two ideas

 One variable at a time, fixed order

 Only trying consistent assignments

Is called “Backtracking Search”
 Basic uninformed algorithm for CSPs

 Can solve n-queens for n 25

Backtracking Search

 What are the choice points?

Improving Backtracking

 General-purpose ideas give huge gains in
speed

 Ordering:
 Which variable should be assigned next?c a ab e s ou d be ass g ed e t

 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

Forward Checking

 Idea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

 Idea: Terminate when any variable has no legal values

WA
SA

NT Q

NSW

V

4/9/2012

4

Forward Checking

Row 1

Row 2

Row 3

QA QB QC QD

21

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3

QA QB QC QD

22

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Prune inconsistent values

QA QB QC QD

23

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Where can QB Go?

QA QB QC QD

24

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3 Q

QA QB QC QD

Prune inconsistent values

25

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Forward Checking

QRow 1

Row 2

Row 3
Where can QB Go?

QA QB QC QD

26

Row 4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

4/9/2012

5

Forward Checking
Cuts the Search Space

4

16

27

16

64

256

Are We Done?

28

Constraint Propagation

 Forward checking propagates information from assigned to adjacent
unassigned variables, but doesn't detect more distant failures:

WA
SA

NT Q

NSW

V

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

 Simplest form of propagation makes each arc consistent
 X � Y is consistent iff for every value x there is some allowed y

WA
SA

NT Q

NSW

V

• If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• What’s the downside of arc consistency?
• Can be run as a preprocessor or after each assignment

Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]

Limitations of Arc Consistency

 After running arc
consistency:
 Can have one solution

left

 Can have multiple
solutions left

 Can have no solutions
left (and not know it)

What went
wrong here?

4/9/2012

6

K-Consistency*

 Increasing degrees of consistency
 1-Consistency (Node Consistency):

Each single node’s domain has a value
which meets that node’s unary
constraints

 2-Consistency (Arc Consistency): For y (y)
each pair of nodes, any consistent
assignment to one can be extended to
the other

 K-Consistency: For each k nodes, any
consistent assignment to k-1 can be
extended to the kth node.

 Higher k more expensive to compute
 (You need to know the k=2 algorithm)

Ordering: Minimum Remaining Values

 Minimum remaining values (MRV):
 Choose the variable with the fewest legal values

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Degree Heuristic

 Tie-breaker among MRV variables
 Degree heuristic:
 Choose the variable participating in the most

constraints on remaining variables

 Why most rather than fewest constraints?

Ordering: Least Constraining Value

 Given a choice of variable:
 Choose the least constraining

value
 The one that rules out the

fewest values in the remaining
variablesvariables

 Note that it may take some
computation to determine this!

 Why least rather than most?

 Combining these heuristics
makes 1000 queens feasible

Problem Structure
 Tasmania and mainland are

independent subproblems

 Identifiable as connected
components of constraint
graph

 Suppose each subproblemSuppose each subproblem
has c variables out of n total

 Worst-case solution cost is
O((n/c)(dc)), linear in n

 E.g., n = 80, d = 2, c =20

 280 = 4 billion years at 10
million nodes/sec

 (4)(220) = 0.4 seconds at 10
million nodes/sec

Tree-Structured CSPs

 Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes
it in the ordering

 For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2)

4/9/2012

7

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can
be solved in O(n d2) time!
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to logical and probabilistic
reasoning: an important example of the relation between
syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors'
domains

 Cutset conditioning: instantiate (in all ways) a set of
variables such that the remaining constraint graph is a tree

 Cutset size c gives runtime O((dc) (n-c) d2), very fast for
small c

Iterative Algorithms for CSPs

 Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

 To apply to CSPs:
 Allow states with unsatisfied constraints

O t i i bl l Operators reassign variable values

 Variable selection: randomly select any conflicted
variable

 Value selection by min-conflicts heuristic:
 Choose value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

 The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

Summary
 CSPs are a special kind of search problem:

 States defined by values (domains) of a fixed set of variables

 Goal test defined by constraints on variable values

 Backtracking = DFS - one legal variable assigned per node

 Variable ordering and value selection heuristics help

 Forward checking prevents assignments that fail later Forward checking prevents assignments that fail later

 Constraint propagation (e.g., arc consistency)
 does additional work to constrain values and detect inconsistencies

 Constraint graph representation
 Allows analysis of problem structure

 Tree-structured CSPs can be solved in linear time

 Iterative min-conflicts is usually effective in practice
 Local (stochastic) search

