CSE 473: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Recap: Search Problem

- States
 - configurations of the world
- Successor function:
 - function from states to lists of triples (state, action, cost)
- Start state
- Goal test

General Tree Search Paradigm function tree-search(root-node) fringe ← successors(root-node) while (notempty(fringe)) {node ← remove-first(fringe) state ← state(node) if goal-test(state) return solution(node) fringe ← insert-all(successors(node),fringe) } return failure Fringe managed as

- Stack
- Depth first
- Queue Breadth first
- Priority Queue
- Best first, uniform cost, greedy, A*

Space of Search Strategies

- Blind Search
- DFS, BFS, IDS
- Informed Search
 - Uniform cost, greedy, A*, IDA*
- **Constraint Satisfaction**
- Backtracking=DFS, FC, k-consistency
- **Adversary Search**

Constraint Satisfaction

- Kind of search in which
 - States are factored into sets of variables
 - Search = assigning values to these variables
 - Goal test is encoded with constraints
 - → Gives structure to search space
 - → Exploration of one part informs others
- Backtracking-style algorithms work
- But other techniques add speed
 - Propagation
 - Variable ordering
 - Preprocessing

Example: N-Queens

- Formulation as search
 - States
 - Operators
 - Start State
 - Goal Test

Systematic / Stochastic

("Local")

Eri

Eri

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (often D depends on i) Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows more powerful search algorithms

Example: N-Queens

CSP Formulation 1:

■ Variables: X_{ij}

■ Domains: {0,1}

$$\begin{aligned} &\forall i,j,k & X_{ij} + X_{ik} \leq I \\ &\forall i,j,k & X_{ij} + X_{kj} \leq I \\ &\forall i,j,k & X_{ij} + X_{i+k,j+k} \leq I \\ &\forall i,j,k & X_{ij} + X_{i+k,j-k} \leq I \end{aligned}$$

$$\forall i, j, k$$
 $A_{ij} + A_{i+1}$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

CSP Formulation 1:

■ Variables: X_{ij} ■ Domains: {0,1}

 $\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$ $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$ $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

Formulation 2:

■ Variables: Q_k

■ Domains: $\{1, 2, 3, ... N\}$

Constraints:

Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)

Explicit: $(Q_1,Q_2) \in \{(1,3),(1,4),\ldots\}$

Example: Map-Coloring

- ullet Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

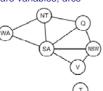
 $(WA, NT) \in \{(red, green), (red, blue), (green, red), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

 $\{WA=red,NT=green,Q=red,$ $NSW = green, V = red, SA = blue, T = green\}$

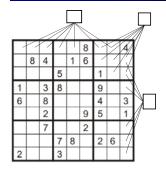
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints



General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Sudoku



- Variables:
- Each (open) square
- Domains:
- **1**,2,...,9 Constraints:

9-way alldiff for each column 9-way alldiff for each row 9-way alldiff for each region

Example: Cryptarithmetic

Variables (circles):

 $F\ T\ U\ W\ R\ O\ X_1\ X_2\ X_3$

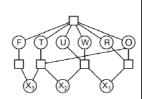
TWO TWO FOUR

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints (boxes):

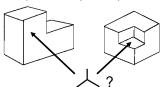
 $\mathsf{alldiff}(F, T, U, W, R, O)$

 $O + O = R + 10 \cdot X_1$



Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP



- Look at all intersections
- Adjacent intersections impose constraints on each other

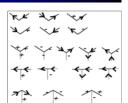
Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (□) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label





Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $\mathrm{O}(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - . E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):

 $SA \neq green$

Binary constraints involve pairs of variables:

 $SA \neq WA$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Transportation scheduling
- Factory scheduling
- Fault diagnosis
- ... lots more!
- Many real-world problems involve real-valued variables...

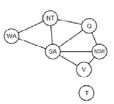
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Start with straightforward approach, then improve
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

What does BFS do?

What does DFS do?



Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - "Incremental goal test"
- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n H 25

Backtracking Search

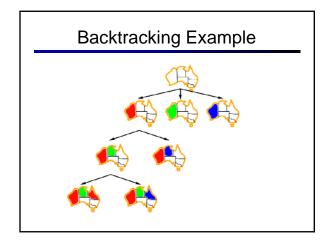
function BACKTRACKING-SEARCH(csp) returns solution/failure return RECURSIVE-BACKTRACKING({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var—Select-Unassigned-Variables(Variables[csp], assignment, csp)
for each ratue in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then

add {var = value} to assignment result ← RECURSIVE-BACKTRACKING(assignment, csp) if result ≠ failure then return result remove {var = value} from assignment

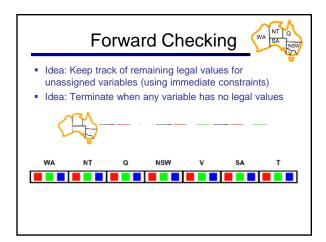
return failure

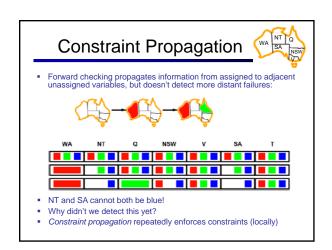
• What are the choice points?

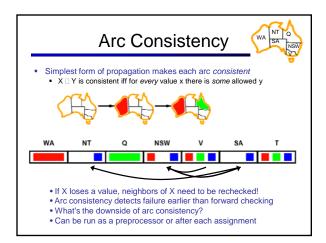


Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?



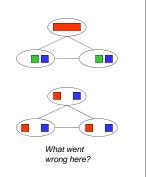




function AC-3(cop) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables {X₁, X₂, ..., X_n} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_n, X_n) = REBAOVE-FIRST(queue) if REMOVE-INCONSISTENT-VALUES(X_n, X_n) then for each X_n in NEEGIBORS[X_n] do add {X_n, X_n} to queue. function REMOVE-INCONSISTENT-VALUES(X_n, X_n) returns true iff succeeds removed—false for each x in DOMAIN[X_n] do if no value y in DOMAIN[X_n] allows {x_n} to satisfy the constraint X_n \to X_n then delete x from DOMAIN[X_n]; removed \to true return removed Runtime: O(n²d³), can be reduced to O(n²d²) Runtime: O(n²d³), can be reduced to O(n²d²) Clemo: arc consistency animation]

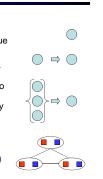
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)



K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 algorithm)



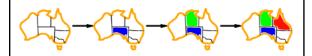
Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Degree Heuristic

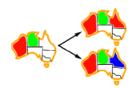
- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables



Why most rather than fewest constraints?

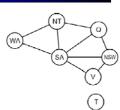
Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible



Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 280 = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

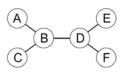


Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

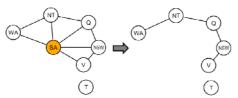
- For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- For i = 1: n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²)

Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time!
 - Compare to general CSPs, where worst-case time is O(dn)
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

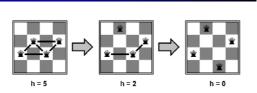


- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Iterative Algorithms for CSPs

- Greedy and local methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

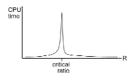


- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move gueen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

 $R = \frac{\text{number of constraints}}{\text{number of variables}}$



Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Chinese Food as Search? States?

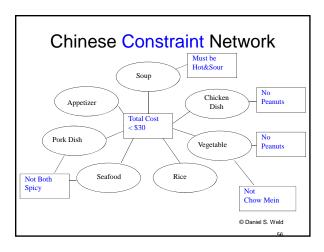
- - · Partially specified meals
- opeAdd, remove, change dishes
 - Null meal Start state?
- - Meal meeting certain conditions (rating?)
- Goal states?

Factoring States

- Rather than state = meal
 Model state's (independent) parts, e.g.
 Suppose every meal for n people
 Has n dishes plus soup

 - Soup = Meal 1 =
 - Meal 2 =
 - Meal n =
- Or... physical state =
- X coordinate =Y coordinate =

© Daniel S. Weld



CSPs in the Real World

- Scheduling space shuttle repair
- Airport gate assignments
- Transportation Planning
- Supply-chain management
- Computer configuration
- Diagnosis
- UI optimization
- Etc...

© Daniel S. Weld

Classroom Scheduling

- Variables?
- Domains (possible values for variables)?
- Constraints?

© Daniel S. Weld

CSP as a search problem?

- What are states?
 - (nodes in graph)
- What are the operators?
 - (arcs between nodes)
- Initial state?
- Goal test?

Q
Q
© Daniel S. Weld
59

