
4/2/2012

1

CSE 473: Artificial Intelligence
Spring 2012

Heuristics & Pattern
Databases for Search

With many slides from
Dan Klein, Richard Korf, Stuart Russell, Andrew Moore, & UW Faculty

Dan Weld

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of (state, action, cost)

triplestriples

 Start state
 Goal test

General Tree Search Paradigm

function tree-search(root-node)
fringe  successors(root-node)
while (notempty(fringe))

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)
fringe  insert-all(successors(node),fringe) }

t f il

3

return failure
end tree-search

Extra Work?

 Failure to detect repeated states can cause
exponentially more work (why?)

General Graph Search Paradigm

function tree-search(root-node)
fringe  successors(root-node)
explored  empty
while (notempty(fringe))

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)

l d  i t(d l d)

5

explored  insert(node,explored)
fringe  insert-all(successors(node),fringe, if node not in explored)

}
return failure

end tree-search

Some Hints

 Graph search is almost always better than tree
search (when not?)

 Implement your closed list as a dict or set!

 Nodes are conceptually paths, but better to
represent with a state, cost, last action, and
reference to the parent node

4/2/2012

2

Informed (Heuristic) Search

7

Idea: be smart
about what paths
to try.

Blind Search vs. Informed Search

 What’s the difference?

 How do we formally specify this? How do we formally specify this?

A node is selected for expansion based on an
evaluation function that estimates cost to goal.

8

Best-First Search
 Use an evaluation function f(n) for node n.

 Always choose the node from fringe that has
the lowest f value.
 Fringe = priority queue

9

3 5 1

4 6

Uniform Cost Search

 f(n) = cost from root

 The good: UCS is complete
and optimal!

…

c  3

c  2

c  1

 The bad:
 Explores options in every

“direction”
 No information about goal

location

Start Goal

Greedy Search

 f(n) = estimate of cost from n to goal

 A common case:
 Takes you straight to the (wrong) goal

…
b

 Worst-case: like a badly-guided DFS
…

b

A* search

 f(n) = estimated total cost of path thru n to goal

 f(n) = g(n) + h(n)
 g(n) = cost so far to reach n g(n) = cost so far to reach n
 h(n) = estimated cost from n to goal

(satisfying some important conditions)

4/2/2012

3

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from
n.

• An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

• h(n) is consistent if
– for every node n
– for every successor n´ due to legal action a
– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also admissible.
• Theorem: If h(n) is consistent, A* using

GRAPH-SEARCH is optimal
14

n

n´ G

c(n,a,n´)
h(n´)

h(n)

When should A* terminate?

 Should we stop when we enqueue a goal?

A2 2
h 2

S

B

G

32
h = 1

h = 2

h = 0

h = 3

 No: only stop when we dequeue a goal

Which Algorithm?

18

Which Algorithm? Which Algorithm?

4/2/2012

4

Which Algorithm?

 Uniform cost search (UCS):

21

Which Algorithm?

 A*, Manhattan Heuristic:

Which Algorithm?

 Best First / Greedy, Manhattan Heuristic:

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

 Uniform-cost expanded in all directions

Start Goal

 A* expands mainly toward the goal, but does
hedge its bets to ensure optimality

Start Goal

Heuristics
It’s what makes search actually work

4/2/2012

5

Admissable Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

37© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem
 For transportation planning, relax requirement that car has

to stay on road  Euclidean dist

 For blocks world distance = # move operations heuristic = For blocks world, distance = # move operations heuristic =
number of misplaced blocks

 What is relaxed problem?

38

out of place = 2, true distance to goal = 3

• Cost of optimal soln to relaxed problem  cost of
optimal soln for real problem

What’s being relaxed? Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem Example: Pancake Problem

3
2

4

State space graph with costs as weights

2

2

4

3

3

2

2

3
4

3

4 3

4/2/2012

6

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

4

3
h(x)

0

2

3

3

3

4

4

3

4

4

4

Traveling Salesman Problem

44

What can be
Relaxed?

Heuristics for eight puzzle
7 2 3

8 3

5 1 6
1 2 3

7 8

4 5 6

start goal



 What can we relax?

45

Importance of Heuristics
h1 = number of tiles in wrong place

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7 2 3

8 5

4 1 6

46

8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Importance of Heuristics
h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc
D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7 2 3

8 5

4 1 6

47

8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

Combining Admissible
Heuristics

 Can always take max

 Adding does not preserve admissibility in
generalgeneral

48

4/2/2012

7

Performance of IDA* on 15
Puzzle

 Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

 Optimal solution lengths average 53 moves.p g g

 400 million nodes generated on average.

 Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan
Distance

 To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000
years on average.

 Assumes that each tile moves independentlyp y

 In fact, tiles interfere with each other.

 Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

4/2/2012

8

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2
additional moves.

Linear Conflict Heuristic

 Hansson, Mayer, and Yung, 1991

 Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

 Still not accurate enough to solve 24-Puzzle

 We can generalize this idea further.

Pattern Database Heuristics

 Culberson and Schaeffer, 1996

 A pattern database is a complete set of such
positions, with associated number of moves.

 e.g. a 7-tile pattern database for the Fifteene.g. a 7 tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

4/2/2012

9

Combining Multiple Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Additive Pattern Databases

 Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

 In contrast, we count only moves of the
pattern tiles, ignoring non-pattern moves. p , g g p

 If no tile belongs to more than one pattern,
then we can add their heuristic values.

 Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 74 5 6 7

8 9 10 11

12 13 15 14
The 7-tile database contains 58 million entries. The 8-tile database contains
519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add valuesWould like to be able to add values

66© Daniel S. Weld
Adapted from Richard Korf presentation

Disjoint Pattern DBs

 Partition tiles into disjoint sets
 For each set, precompute table
 E.g. 8 tile DB has 519 million entries

 And 7 tile DB has 58 million

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

 During search
 Look up heuristic values for each set

 Can add values without overestimating!

 Manhattan distance is a special case of this idea
where each set is a single tile

67© Daniel S. Weld
Adapted from Richard Korf presentation

4/2/2012

10

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

68© Daniel S. Weld
Adapted from Richard Korf presentation

