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CSE 473: Artificial Intelligence
Spring 2012

Heuristics & Pattern 
Databases for Search

With many slides from 
Dan Klein, Richard Korf, Stuart Russell,  Andrew Moore, & UW Faculty

Dan Weld

Recap: Search Problem

 States 
 configurations of the world

 Successor function: 
 function from states to lists of (state, action, cost) 

triplestriples

 Start state
 Goal test

General Tree Search Paradigm

function tree-search(root-node)
fringe  successors(root-node)
while ( notempty(fringe) )

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)
fringe  insert-all(successors(node),fringe) }

t f il
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return failure
end tree-search

Extra Work?

 Failure to detect repeated states can cause 
exponentially more work (why?)

General Graph Search Paradigm

function tree-search(root-node)
fringe  successors(root-node)
explored  empty
while ( notempty(fringe) )

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)

l d  i t( d l d)

5

explored  insert(node,explored)
fringe  insert-all(successors(node),fringe, if node not in explored) 

}
return failure

end tree-search

Some Hints

 Graph search is almost always better than tree 
search (when not?)

 Implement your closed list as a dict or set!

 Nodes are conceptually paths, but better to 
represent with a state, cost, last action, and 
reference to the parent node
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Informed (Heuristic) Search
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Idea: be smart
about what paths
to try.

Blind Search vs. Informed Search

 What’s the difference?   

 How do we formally specify this? How do we formally specify this?

A node is selected for expansion based on an 
evaluation function that estimates cost to goal.

8

Best-First Search
 Use an evaluation function f(n) for node n.

 Always choose the node from fringe that has 
the lowest f value.
 Fringe = priority queue
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4 6

Uniform Cost Search

 f(n) = cost from root

 The good: UCS is complete 
and optimal!

…

c  3

c  2

c  1

 The bad:
 Explores options in every 

“direction”
 No information about goal 

location

Start Goal

Greedy Search

 f(n) = estimate of cost from n to goal

 A common case:
 Takes you straight to the (wrong) goal

…
b

 Worst-case: like a badly-guided DFS
…

b

A* search

 f(n) = estimated total cost of path thru n to goal

 f(n) = g(n) + h(n)
 g(n) = cost so far to reach n g(n) = cost so far to reach n
 h(n) = estimated cost from n to goal

(satisfying some important conditions)
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Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from 
n.

• An admissible heuristic never overestimates the cost to reach the 
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

• h(n) is consistent if 
– for every node n
– for every successor n´ due to legal action a
– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also admissible.
• Theorem: If h(n) is consistent, A* using 

GRAPH-SEARCH is optimal
14

n

n´ G

c(n,a,n´) 
h(n´)

h(n)

When should A* terminate?

 Should we stop when we enqueue a goal?

A2 2
h 2

S

B

G

32
h = 1

h = 2

h = 0

h = 3

 No: only stop when we dequeue a goal

Which Algorithm?

18

Which Algorithm? Which Algorithm?
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Which Algorithm?

 Uniform cost search (UCS):

21

Which Algorithm?

 A*, Manhattan Heuristic:

Which Algorithm?

 Best First / Greedy, Manhattan Heuristic:

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

 Uniform-cost expanded in all directions

Start Goal

 A* expands mainly toward the goal, but does 
hedge its bets to ensure optimality

Start Goal

Heuristics
It’s what makes search actually work
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Admissable Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

37© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of 
a solution to a relaxed version of problem
 For transportation planning, relax requirement that car has 

to stay on road  Euclidean dist

 For blocks world distance = # move operations heuristic = For blocks world, distance = # move operations heuristic = 
number of misplaced blocks

 What is relaxed problem?

38

# out of place = 2,   true distance to goal = 3

• Cost of optimal soln to relaxed problem  cost of 
optimal soln for real problem

What’s being relaxed? Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem Example: Pancake Problem

3
2

4

State space graph with costs as weights

2

2
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4
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4 3
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Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

4

3
h(x)

0

2

3

3

3
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4
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4

4

Traveling Salesman Problem

44

What can be
Relaxed?

Heuristics for eight puzzle
7 2   3

8   3

5   1    6
1   2     3

7   8

4   5    6

start goal



 What can we relax?

45

Importance of Heuristics
h1 = number of tiles in wrong place

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7    2     3

8    5

4    1     6

46

8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Importance of Heuristics
h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc
D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7    2     3

8    5

4    1     6

47

8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

Combining Admissible 
Heuristics

 Can always take max

 Adding does not preserve admissibility in 
generalgeneral

48



4/2/2012

7

Performance of IDA* on 15 
Puzzle

 Random 15 puzzle instances were first solved 
optimally using IDA* with Manhattan distance 
heuristic (Korf, 1985).

 Optimal solution lengths average 53 moves.p g g

 400 million nodes generated on average.

 Average solution time is about 50 seconds on 
current machines.

Limitation of Manhattan 
Distance

 To solve a 24-Puzzle instance, IDA* with 
Manhattan distance would take about 65,000 
years on average.

 Assumes that each tile moves independentlyp y

 In fact, tiles interfere with each other.

 Accounting for these interactions is the key to 
more accurate heuristic functions.

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves
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Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2 
additional moves.

Linear Conflict Heuristic

 Hansson, Mayer, and Yung, 1991

 Given two tiles in their goal row, but reversed 
in position, additional vertical moves can be 
added to Manhattan distance.

 Still not accurate enough to solve 24-Puzzle

 We can generalize this idea further. 

Pattern Database Heuristics

 Culberson and Schaeffer, 1996

 A pattern database is a complete set of such 
positions, with associated number of moves.

 e.g. a 7-tile pattern database for the Fifteene.g. a 7 tile pattern database for the Fifteen 
Puzzle contains 519 million entries. 

Heuristics from Pattern Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve 
this particular state.
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Combining Multiple Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Additive Pattern Databases

 Culberson and Schaeffer counted all moves 
needed to correctly position the pattern tiles.

 In contrast, we count only moves of the 
pattern tiles, ignoring non-pattern moves. p , g g p

 If no tile belongs to more than one pattern,  
then we can add their heuristic values.

 Manhattan distance is a special case of this, 
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 74 5 6 7

8 9 10 11

12 13 15 14
The 7-tile database contains 58 million entries. The 8-tile database contains 
519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add valuesWould like to be able to add values

66© Daniel S. Weld
Adapted from Richard Korf presentation

Disjoint Pattern DBs

 Partition tiles into disjoint sets
 For each set, precompute table
 E.g. 8 tile DB has 519 million entries

 And 7 tile DB has 58 million

9  10  11 12

13 14  15

1   2   3   4

5  6   7   8

 During search
 Look up heuristic values for each set

 Can add values without overestimating!

 Manhattan distance is a special case of this idea 
where each set is a single tile

67© Daniel S. Weld
Adapted from Richard Korf presentation
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Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15 

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan 
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

68© Daniel S. Weld
Adapted from Richard Korf presentation


