CSE 473: Artificial Intelligence
Spring 2012

Heuristics & Pattern
Databases for Search

Dan Weld

With many slides from
Dan Klein, Richard Korf, Stuart Russell, Andrew Moore, & UW Faculty

4/2/2012

Recap: Search Problem

= States
= configurations of the world
= Successor function:

= function from states to lists of (state, action, cost)
triples

= Start state
= Goal test

General Tree Search Paradigm

function tree-search(root-node)
fringe € successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe)
state € state(node)
if goal-test(state) return solution(node)
fringe €< insert-all(successors(node),fringe) }
return failure
end tree-search

Extra Work?

= Failure to detect repeated states can cause
exponentially more work (why?)

General Graph Search Paradigm

function tree-search(root-node)
fringe < successors(root-node)
explored € empty
while (notempty(fringe))
{node & remove-first(fringe)
state < state(node)
if goal-test(state) return solution(node)
explored € insert(node,explored)
fringe €< insert-all(successors(node),fringe, if node not in explored)

return failure
end tree-search

A & A &
1 i
B e e B®
o e cf cp cf cp
D o= \ .
Some Hints

= Graph search is almost always better than tree
search (when not?)

= Implement your closed list as a dict or set!

= Nodes are conceptually paths, but better to
represent with a state, cost, last action, and
reference to the parent node

4/2/2012

Informed (Heuristic) Search Blind Search vs. Informed Search

= What's the difference?

= How do we formally specify this?

T
fbeﬁjtbﬁh?,?;hs ® Op N A node is selected for expansion based on an
to'try. ! o evaluation function that estimates cost to goal.
ONO©) /O
O
/

Best-First Search Uniform Cost Search

= Use an evaluation function f(n) for node n.

= Always choose the node from fringe that has
the lowest f value. = The good: UCS is complete

= f(n) = cost from root

imal!
= Fringe = priority queue and optimalt
‘ = The bad:
= Explores options in every
“direction”
* No information about goal
e e 0 location
9
Greedy Search A" search

= f(n) = estimate of cost from n to goal

= f(n) = estimated total cost of path thru n to goal
= A common case:
= Takes you straight to the (wrong) goal

= f(n) = g(n) + h(n)
» g(n) = cost so far to reach n
» h(n) = estimated cost from n to goal
(satisfying some important conditions)

= Worst-case: like a badly-guided DFS

4/2/2012

Admissible heuristics Consistent Heuristics
« A heuristic h(n) is admissible if for every node n, e h(n) is consistent if
h(n) < h'(n), where h'(n) is the true cost to reach the goal state from — for every node n

n — for every successor n” due to legal action a

o -) —h(n) <=c(n,a,n’) + h(n")
» An admissible heuristic never overestimates the cost to reach the

goal, i.e., it is optimistic

» Example: hg p(n) (never overestimates the actual road distance)

« Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal « Every consistent heuristic is also admissible.

e Theorem: If h(n) is consistent, A" using
GRAPH-SEARCH is optimal

14

When should A* terminate? Which Algorithm?

= Should we stop when we enqueue a goal?

/\
\/’

= No: only stop when we dequeue a goal

18

Which Algorithm? Which Algorithm?

Which Algorithm?

= Uniform cost search (UCS):

4/2/2012

Which Algorithm?

= A* Manhattan Heuristic:

Which Algorithm?

= Best First / Greedy, Manhattan Heuristic:

Properties of A*

Uniform-Cost A*

b b

UCS vs A* Contours

= Uniform-cost expanded in all directions

Goal

= A* expands mainly toward the goal, but does
hedge its bets to ensure optimality

Heuristics

It's what makes search actually work

Admissable Heuristics

= f(x) = g(x) + h(x)
= g: cost so far
= h: underestimate of remaining costs

Where do heuristics come from?

© Daniel S. Weld

4/2/2012

Relaxed Problems

= Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem

= For transportation planning, relax requirement that car has
to stay on road > Euclidean dist

= For blocks world, distance = # move operations heuristic =
number of misplaced blocks

= What is relaxed problem?
-]
§ |

out of place = 2, true distance to goal = 3

+ Cost of optimal soln to relaxed problem < cost of
optimal soln for real problem

— —

38

What's being relaxed?

Straight-line distance
o Bucharest

Arad 16
Bucharest o

Craiova 160

Dobreta 241

Arad [Eforie 161
Fagaras 176

114 slmu @ Fagems Glargiu i
Hirsova 151

Tasi 26

Lugoj e

Mehadia 21

Neamt 4

Oradea ey

Pitesti 10

MBSO Rimmicu Vikea o3

Sibiu 253

Timisoara 309

b Urziceni =

Eoe Vashi 199

Zerind 34

Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T

Dep of Electrical Es U

ty of California, Berkeley, CA 94720, U.S.A.

Recoived 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 1o r, let flo) be the smallest number of prefix
reversals that will transform o 1o the identity permutation, and let f(n) be the largest such [io)
for all o in (the symmetric group) 5_. We show that fin)=(3n + 5)/3, and that fin)a=1Tn/16 for
n a multiple of 16. If, furtherndre, each integer is required o participate in an éven nimber of
reversed prefixes, the corresponding function gin) is shown 10 obey 32~ 1=g(n)=2n+3,

Example: Pancake Problem

State space graph with costs as weights

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

4/2/2012

Traveling Salesman Problem

What can be
Relaxed?

Heuristics for eight puzzle

712 (3 1123
5169 415][6

H H

start goal

= What can we relax?

~

Importance of Heuristics

IN
ol = N

oo

h1 = number of tiles in wrong place

.CDw

D DS A*(h1)
2 10 6
4 112 13
6 680 20
8 6384 39
10 47127 93
12 364404 227
14 3473941 539
18 3056
24 39135

46

Importance of Heuristics

h1l = number of tiles in wrong place

N
ol = N

.mW

0|

h2 = X distances of tiles from correct loc

D DS A%(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 13
18 3056 363

24 39135 1641

Decrease effective branching factor

47

Combining Admissible
Heuristics
= Can always take max

= Adding does not preserve admissibility in
general

48

Performance of IDA* on 15
Puzzle

= Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

= Optimal solution lengths average 53 moves.
= 400 million nodes generated on average.

= Average solution time is about 50 seconds on
current machines.

4/2/2012

Limitation of Manhattan
Distance

= To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000
years on average.

= Assumes that each tile moves independently
= |n fact, tiles interfere with each other.

= Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

H B N N

—

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

3] 1 3

—

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

4/2/2012

Example: Linear Conflict Example: Linear Conflict
E;.: — —
Manhattan distance is 2+2=4 moves Manhattan distance is 2+2=4 moves

Linear Conflict Heuristic

Example: Linear Conflict
= Hansson, Mayer, and Yung, 1991

= Given two tiles in their goal row, but reversed

:-:- :-:- in position, additional vertical moves can be

added to Manhattan distance.
-_— = Still not accurate enough to solve 24-Puzzle
= We can generalize this idea further.

Manhattan distance is 2+2=4 moves, but linear conflict adds 2
additional moves.

Pattern Database Heuristics

Heuristics from Pattern Databases

= Culberson and Schaeffer, 1996

= A pattern database is a complete set of such
positions, with associated number of moves.

= e.g. a 7-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

31 moves is a lower bound on the total number of moves needed to solve
this particular state.

Combining Multiple Databases

..

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Overall heuristic is maximum of 31 moves

Example Additive Databases

The 7-tile database contains 58 million entries. The 8-tile database contains
519 million entries.

Drawbacks of Standard Pattern DBs

= Since we can only take max
= Diminishing returns on additional DBs

= Would like to be able to add values

© Daniel S. Weld

Adapted from Richard Korf presentation

4/2/2012

Additive Pattern Databases

= Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

= In contrast, we count only moves of the
pattern tiles, ignoring non-pattern moves.

= If no tile belongs to more than one pattern,
then we can add their heuristic values.

= Manhattan distance is a special case of this,
where each pattern contains a single tile.

Computing the Heuristic

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Overall heuristic is sum, or 20+25=45 moves

Disjoint Pattern DBs

= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million

= During search
= Look up heuristic values for each set
= Can add values without overestimating!

= Manhattan distance is a special case of this idea
where each set is a single tile

© Daniel S. Weld 67

Adapted from Richard Korf presentation

2 4

. . . L. 56 8

= Partition tiles into disjoint sets S
= For each set, precompute table Gia1 .

© Daniel S. Weld

Performance

= 15 Puzzle: 2000x speedup vs Manhattan dist

= IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

= 24 Puzzle: 12 million x speedup vs Manhattan
= IDA* can solve random instances in 2 days.
= Requires 4 DBs as shown

= Each DB has 128 million entries
= Without PDBs: 65,000 years

Adapted from Richard Korf presentation 68

4/2/2012

10

