CSE 473: Artificial Intelligence
Spring 2012

Search

Dan Weld

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

3/28/2012

Announcements

= Project 0: Python Tutorial
= Online, but not graded

= Project 1: Search
= On the web by tomorrow.
= Start early and ask questions. It's longer than most!

Outline

= Agents that Plan Ahead
= Search Problems

= Uninformed Search Methods (part review for some)
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

= Heuristic Search Methods (new for all)
= Best First/ Greedy Search

Review: Rational Agents

= Anagent is an entity that
perceives and acts.

Agent

Arational agent selects Sensors

actions that maximize its
utility function.

Percepts

= Characteristics of the
percepts, environment, and
action space dictate
techniques for selecting

Actuators

JUBWUOIIAUT

rational actions. Actions

Search -- the environment is:

fully observable, single agent, deterministic, episodic,
discrete

Reflex Agents

= Reflex agents:

= Choose action based
on current percept (and
maybe memory)

= Do not consider the
future consequences of
their actions

= Act on how the world IS
= Can a reflex agent be
rational?
= Can a non-rational
agent achieve goals?

Famous Reflex Agents

Goal Based Agents

3/28/2012

= Goal-based agents:
= Plan ahead
= Ask “what if”
Decisions based on
(hypothesized)
consequences of
actions
= Must have a model of
how the world evolves
in response to actions
= Act on how the world
WOULD BE

Search thru a
Problem Space / State Space
* Input:
= Set of states
= Operators [and costs]
= Start state
= Goal state [test]

* Output:

« Path: start = a state satisfying goal test
« [May require shortest path]
* [Sometimes just need state passing test]

Example: Simplified Pac-Man

= |nput:
= A state space

= A successor function

—
= A start state “E", 1.0
= Agoal test

= Qutput:

Ex: Route Planning: Romania - Bucharest

= |nput:
= Set of states

= Operators [and costs]
= Start state

= Goal state (test) g e \ -

= Qutput: .

DG

Example: N Queens

= Input:

= Set of states Q

= Operators [and costs] Q

= Start state
= Goal state (test)

= Output

Ex: Blocks World

= Input:

= Set of states
Partially specified plans

= Operators [and costs]

Plan modification operators

= Start state
The null plan (no actions)

= Goal state (test)
A plan which provably achieves

The desired world configuration

= Output:

3/28/2012

Multiple Problem

¥ “sistimus: Algebraic Simplification
Spaces am |

Pu = —[E'—’(%l)—r’] u(r)

Real World B (2 -0) uls) = —[E'—l(+1)e ™~ c*] uls)
) . o [z%') ZH = o [E e - o] u(e)
States of the world (e.g. block configurations) = |nput:
it u(s) = —|E'= {1+ e ¢ u(s)
Actions (take one world-state to gother) = Set of states e)] [E () } @
/\/\/\/ﬁ-\/\/\/ _ [E'-(u;) _]
Robot's Head = Operators [and costs]

- Problem Space 2 = Start state
* PS states =
- partially spec. plan

* Problem Space 1
* PS states =
- models of world states
+ Operators = = Goal state (test)
+ plan modificat'n ops

+ Operators =

- models of actions

= Output:

State Space Graphs State Space Sizes?

= State space graph:
= Each node is a state
= The successor function
is represented by arcs
= Edges may be labeled
with costs
= We can rarely build this
graph in memory (so we

dOﬂ’t) Ridiculously tiny search graph
for a tiny search problem

Search Problem:
Eat all of the food

= Pacman positions:
10x 12 =120

= Pacman facing:
up, down, left, right

= Food Count: 30
= Ghost positions: 12

Search Strategies Search Trees
= Blind Search

« Depth first search N0 —E 10

 Breadth first search u -

« lterative deepening search I I

¢ Uniform cost search

= Asearch tree:
= |nf0rmed SearCh = Start state at the root node

n Constraint SatiSfaCtion = Children correspond to successors
Nodes contain states, correspond to PLANS to those states
= Adversary Search

Edges are labeled with actions and costs
For most problems, we can never actually build the whole tree

Example: Tree Search

3/28/2012

State Graph:

What is the search tree?

State Graphs vs. Search Trees

Each NODE in in the
search tree is an entire
PATH in the problem

Building Search Trees

= Search:
= Expand out possible plans
= Maintain a fringe of unexpanded plans
= Try to expand as few tree nodes as possible

graph.
S
P
d € P
P N |
We construct both b c e h r q
on demand — and | [N N
we construct as a a h r p q f
little as possible. N | | [N
p q f q ¢ G
| ON ;‘J‘
q c
. G
a
Tunetion Tree-Seanonf poblem, strefegy) returms s selution, or fsiluee
initializz the search tree using the mitial state of problem
loop do
il there are no candidates for cxpansion then return faduee
choose a leaf node for expansion sccording to strategy
il the nodz contams @ gesl state then relurn the corresponding solution
alse expand the node and add the resulting nodes to the search tree
vl
T
= Important ideas:
= Fringe Detailed pseudocode is
. Expansion in the book!

= Exploration strategy

= Main question: which fringe nodes to explore?

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
queue (a stack)

Review: Depth First Search

Expansion ordering:

(d,b,a,c,ae,h,p,q,q.rfcasG)

3/28/2012

Review: Breadth First Search

Strategy: expand
shallowest node
first

Implementation:
Fringe is a FIFO
queue

Review: Breadth First Search

Expansion order:

(S.depbcehrgaa
hrp.afpafa.c,G)

@,,
Search N
Tiers @ G‘;} /Q

@ an

N

g

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

Cc* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete |Optimal |Time Space

DES |Depth First No No Infinite Infinite

Search

= Infinite paths make DFS incomplete...
= How can we fix this?
= Check new nodes against path from S

= Infinite search spaces still a problem

ORON

\

1 node
b nodes
b2 nodes
m tiers
b™ nodes
Algorithm Complete |Optimal |Time Space
DFs [yrae, | viffinite | N o(bm) O(bm)

* Or graph search — next lecture.

BFS

Algorithm Complete |Optimal |Time Space
DFS et Y N o(bm) O(bm)
BFS Y Y* O(b%) O(b?)
1 node
b nodes
d tiers
b? nodes
L b nodes
b™ nodes

Memory a Limitation?

= Suppose:
4 GHz CPU

* 6 6B main memory
- 100 instructions / expansion
- 5 bytes / node

+ 400,000 expansions / sec
* Memory filled in 300 sec .. 5 min

3/28/2012

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If“1" failed, do a DFS which only searches paths
of length 2 or less.

3. If“2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete [Optimal |Time Space
DFS |Cheaing | Y N o(bM) o(om)
BFS Y Y+ o(bd) O(bd)
ID Y Y* O(b?) O(bd)

Cost of Iterative Deepening

b ratio ID to DFS
2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

Speed Assuming 10M nodes/sec & sufficient memory

BFS lter. Deep.
Nodes Time Nodes Time

8 Puzzle 105 .01 sec 105 .01 sec

2x2x2 Rubik's 106 2 sec 108 .2 sec

15 Puzzle 10 6days 1wmx 10%7 20k yrs
3x3x3 Rubik’'s 101° 68kyrs sx 1020 574kyrs
24 Puzzle 10 12Byrs 10%7 102 yrs

hy the difference?
Rubik has higher branch factor

of duplicates
15 puzzle has greater depth

Side adapted from Richard Korf presentation

When to Use lterative Deepening

= N Queens?

© Daniel S. Weld 37

