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CSE 473: Artificial Intelligence
Spring 2012

Search

With slides from 
Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer

Dan Weld

Announcements

 Project 0: Python Tutorial
 Online, but not graded

 Project 1: Search
 On the web by tomorrow.

 Start early and ask questions.  It’s longer than most!

Outline

 Agents that Plan Ahead

 Search Problems

Uninformed Search Methods (part re ie for some) Uninformed Search Methods (part review for some)
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods (new for all)
 Best First / Greedy Search

Review: Rational Agents

 An agent is an entity that 
perceives and acts.

 A rational agent selects 
actions that maximize its 
utility function.  

Agent

Sensors
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Percepts

 Characteristics of the 
percepts, environment, and 
action space dictate 
techniques for selecting 
rational actions.

Search -- the environment is:
fully observable, single agent, deterministic, episodic, 
discrete

?

Actuators
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Actions

Reflex Agents

 Reflex agents:
 Choose action based 

on current percept (and 
maybe memory)

 Do not consider the 
future consequences offuture consequences of 
their actions

 Act on how the world IS

 Can a reflex agent be 
rational?

 Can a non-rational 
agent achieve goals?

Famous Reflex Agents
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Goal Based Agents

 Goal-based agents:
 Plan ahead
 Ask “what if”
 Decisions based on 

(hypothesized) 
consequences of 
actions

 Must have a model of 
how the world evolves 
in response to actions

 Act on how the world 
WOULD BE

Search thru a 

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space 

 Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Output:

Example: Simplified Pac-Man

 Input:
 A state space

 A successor function
“N” 1 0

 A start state 

 A goal test

 Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Romania  Bucharest

 Input:
 Set of states

 Operators [and costs]

 Start state Start state

 Goal state (test)

 Output:

Example: N Queens

 Input:
 Set of states

 Operators [and costs]

Q

Q

Q

Q

 Start state

 Goal state (test)

 Output

Ex: Blocks World
 Input:
 Set of states

 Operators [and costs]

Partially specified plans

Plan modification operators

 Start state

 Goal state (test)

 Output:

p

The null plan (no actions)

A plan which provably achieves

The desired world configuration
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Multiple Problem 
Spaces

Real World
States of the world (e.g. block configurations)   

Actions (take one world-state to another)

Robot’s Head
• Problem Space 1
• PS states = 

• models of world states
• Operators = 

• models of actions

Robot s Head
• Problem Space 2
• PS states = 

• partially spec. plan
• Operators = 

• plan modificat’n ops

Algebraic Simplification

 Input:
 Set of states

 Operators [and costs]

14

 Operators [and costs]

 Start state

 Goal state (test)

 Output:

State Space Graphs

 State space graph:

 Each node is a state

 The successor function 
is represented by arcs

G

d

b c

e

a

f Edges may be labeled 
with costs

 We can rarely build this 
graph in memory (so we 
don’t)

S

d

p
q

h

f

r

Ridiculously tiny search graph 
for a tiny search problem

State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food Count: 30

 Ghost positions: 12

Search Strategies

 Blind Search
• Depth first search

• Breadth first search

• Iterative deepening search

 Informed Search
 Constraint Satisfaction
 Adversary Search

• Uniform cost search

Search Trees

“E”, 1.0“N”, 1.0

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree
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Example: Tree Search
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State Graph:
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r

What is the search tree?

State Graphs vs. Search Trees

S

S

G

d

b

p q

c

e

h

a

f

r

Each NODE in in the 
search tree is an entire 
PATH in the problem 
graph.

S

a

b
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We construct both 
on demand – and 
we construct as 
little as possible.

Building Search Trees

 Search:
 Expand out possible plans
 Maintain a fringe of unexpanded plans
 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode is 
in the book!

Review: Depth First Search

G

b c

e

aStrategy: expand 
deepest node first

Implementation:

S

d

p
q

e

h

f

r

Implementation: 
Fringe is a LIFO 
queue (a stack)

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b

a
c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)
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Review: Breadth First Search

G

b c

e

aStrategy: expand 
shallowest node 
first

S

d

p
q

e

h

f

r

Implementation: 
Fringe is a FIFO 
queue

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)
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d p
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q c G
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Search

Tiers

Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal? Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

V i blVariables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete Optimal Time Space

DFS Depth First 
Search

N N O(BLMAX) O(LMAX)

START

No No Infinite Infinite

 Infinite paths make DFS incomplete…
 How can we fix this?
 Check new nodes against path from S

 Infinite search spaces still a problem

GOALa

b

DFS

…
b

1 node

b nodes

b2 nodes

m tiers

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking Y if finite N O(bm) O(bm)

bm nodes

* Or graph search – next lecture.

BFS
Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

1 node

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes
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Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 6 GB main memory
• 100 instructions / expansion

5 b t s / n d• 5 bytes / node

• 400,000 expansions / sec
• Memory filled in 300 sec   …  5 min

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  

2. If “1” failed, do a DFS which only searches paths 
of length 2 or less.

3 If “2” f il d d DFS hi h l h th

…
b

3. If “2” failed, do a DFS which only searches paths 
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y Y* O(bd) O(bd)

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

35

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes   Time

Iter. Deep.
Nodes  Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

# of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?
Rubik has higher branch factor
15 puzzle has greater depth

8x

1Mx

When to Use Iterative Deepening

 N Queens?
Q

Q

Q
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