
3/28/2012

1

CSE 473: Artificial Intelligence
Spring 2012

Search

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Dan Weld

Announcements

 Project 0: Python Tutorial
 Online, but not graded

 Project 1: Search
 On the web by tomorrow.

 Start early and ask questions. It’s longer than most!

Outline

 Agents that Plan Ahead

 Search Problems

Uninformed Search Methods (part re ie for some) Uninformed Search Methods (part review for some)
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods (new for all)
 Best First / Greedy Search

Review: Rational Agents

 An agent is an entity that
perceives and acts.

 A rational agent selects
actions that maximize its
utility function.

Agent

Sensors

E
n

v
ir

Percepts

 Characteristics of the
percepts, environment, and
action space dictate
techniques for selecting
rational actions.

Search -- the environment is:
fully observable, single agent, deterministic, episodic,
discrete

?

Actuators

ro
n

m
e

n
t

Actions

Reflex Agents

 Reflex agents:
 Choose action based

on current percept (and
maybe memory)

 Do not consider the
future consequences offuture consequences of
their actions

 Act on how the world IS

 Can a reflex agent be
rational?

 Can a non-rational
agent achieve goals?

Famous Reflex Agents

3/28/2012

2

Goal Based Agents

 Goal-based agents:
 Plan ahead
 Ask “what if”
 Decisions based on

(hypothesized)
consequences of
actions

 Must have a model of
how the world evolves
in response to actions

 Act on how the world
WOULD BE

Search thru a

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space

 Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Output:

Example: Simplified Pac-Man

 Input:
 A state space

 A successor function
“N” 1 0

 A start state

 A goal test

 Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Romania  Bucharest

 Input:
 Set of states

 Operators [and costs]

 Start state Start state

 Goal state (test)

 Output:

Example: N Queens

 Input:
 Set of states

 Operators [and costs]

Q

Q

Q

Q

 Start state

 Goal state (test)

 Output

Ex: Blocks World
 Input:
 Set of states

 Operators [and costs]

Partially specified plans

Plan modification operators

 Start state

 Goal state (test)

 Output:

p

The null plan (no actions)

A plan which provably achieves

The desired world configuration

3/28/2012

3

Multiple Problem
Spaces

Real World
States of the world (e.g. block configurations)

Actions (take one world-state to another)

Robot’s Head
• Problem Space 1
• PS states =

• models of world states
• Operators =

• models of actions

Robot s Head
• Problem Space 2
• PS states =

• partially spec. plan
• Operators =

• plan modificat’n ops

Algebraic Simplification

 Input:
 Set of states

 Operators [and costs]

14

 Operators [and costs]

 Start state

 Goal state (test)

 Output:

State Space Graphs

 State space graph:

 Each node is a state

 The successor function
is represented by arcs

G

d

b c

e

a

f Edges may be labeled
with costs

 We can rarely build this
graph in memory (so we
don’t)

S

d

p
q

h

f

r

Ridiculously tiny search graph
for a tiny search problem

State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food Count: 30

 Ghost positions: 12

Search Strategies

 Blind Search
• Depth first search

• Breadth first search

• Iterative deepening search

 Informed Search
 Constraint Satisfaction
 Adversary Search

• Uniform cost search

Search Trees

“E”, 1.0“N”, 1.0

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree

3/28/2012

4

Example: Tree Search

G

b c

e

a

State Graph:

S

d

p
q

e

h

f

r

What is the search tree?

State Graphs vs. Search Trees

S

S

G

d

b

p q

c

e

h

a

f

r

Each NODE in in the
search tree is an entire
PATH in the problem
graph.

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

We construct both
on demand – and
we construct as
little as possible.

Building Search Trees

 Search:
 Expand out possible plans
 Maintain a fringe of unexpanded plans
 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode is
in the book!

Review: Depth First Search

G

b c

e

aStrategy: expand
deepest node first

Implementation:

S

d

p
q

e

h

f

r

Implementation:
Fringe is a LIFO
queue (a stack)

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b

a
c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

3/28/2012

5

Review: Breadth First Search

G

b c

e

aStrategy: expand
shallowest node
first

S

d

p
q

e

h

f

r

Implementation:
Fringe is a FIFO
queue

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Search

Tiers

Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal? Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

V i blVariables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete Optimal Time Space

DFS Depth First
Search

N N O(BLMAX) O(LMAX)

START

No No Infinite Infinite

 Infinite paths make DFS incomplete…
 How can we fix this?
 Check new nodes against path from S

 Infinite search spaces still a problem

GOALa

b

DFS

…
b

1 node

b nodes

b2 nodes

m tiers

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking Y if finite N O(bm) O(bm)

bm nodes

* Or graph search – next lecture.

BFS
Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

1 node

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

3/28/2012

6

Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 6 GB main memory
• 100 instructions / expansion

5 b t s / n d• 5 bytes / node

• 400,000 expansions / sec
• Memory filled in 300 sec … 5 min

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3 If “2” f il d d DFS hi h l h th

…
b

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y Y* O(bd) O(bd)

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

35

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes Time

Iter. Deep.
Nodes Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?
Rubik has higher branch factor
15 puzzle has greater depth

8x

1Mx

When to Use Iterative Deepening

 N Queens?
Q

Q

Q

© Daniel S. Weld 37

Q

