CSE 473

Lecture 5

Heuristics
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Last Time: A* Search

» Use an evaluation function f(n) for node n.
f(n)= estimated total cost of path thru 7 to goal
* f(n) = g(n) + h(n)
* g(n)= cost so far to reach n
* h(n)= estimated cost from » to goal
» Always choose the node from frontier that
has the lowest f value.
Frontier = priority queue




A* vs. Uniform Cost Search vs. Dijkstra

* All three are optimal but differ in search
strategy, time/space complexity, and goals

« A* uses f(n) = g(n) + h(n) to find shortest
path to a single goal

» Uniform cost search uses 7(n) = g(n) to find
shortest path to a single goal

- Dijkstra's algorithm also uses 7(n) = g(n) but
finds shortest paths to a// nodes

A* vs. Uniform Cost Search vs. Dijkstra
A*

- A* expands mainly toward
the goal with the help of =D
the heuristic function

uc
* Uniform-cost and Dijkstra Goal

expand in all directions

Dijsktra

- A* can be more efficient if
the heuristic is good Q
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Uniform Cost Pac-Man

A* Pac-Man with Manhattan distance
heuristic




Recall: Admissible Heuristics

« A* uses f(x) = g(x) + h(x)
* (. cost so far
* h: underestimate of remaining costs

e.g., hg pis an
admissible heuristic
for the route finding
problem

Proved last time: If h(n) admissible, A* optimal

More heuristic functions

For the 8-puzzle (get to goal state with
smallest # of moves), what are some
heuristic functions?

* hyn)=7?

* hy(n)=7?
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Example heuristic functions

Examples:

* hyn)= number of misplaced tiles

* h(n)= total Manhattan distance (ho. of squares
from desired location of each tile)
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Example heuristics

Examples:

* hy(n)= number of misplaced tiles

* hy(n)= total Manhattan distance (no. of squares
from desired location of each tile)
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- Are these admissible heuristics?




Dominance

« If hs(n)2 hy(n)for all n(both
admissible) then A, dominates A,

* h,is better for search (why?)
Getting closer to the actual cost to goal

- Does one dominate the other for:
h,(n) = number of misplaced ftiles
h,(n) = total Manhattan distance

Dominance

* For 8-puzzle heuristics h; and h,, typical search
costs (average number of nodes expanded for
solution depth d):

- d=12  IDS = 3,644,035 nodes

A*(h,) = 227 nodes

A*(h,) = 73 nodes

- d=24 IDS = too many nodes to fit in memory
A*(h;) = 39,135 nodes

A’(h,) = 1,641 nodes




For many problems, A* can still
require foo much memory

Iterative-Deepening A* (IDA*)
* Less memory required compared to A*
* Like iterative-deepening search, but...
- Depth bound modified to be an f-limit
Start with limit = h(start)
Prune any node if f(node) > f-limit
Next f-limit=min-cost of any node pruned




That's cool yo but how do
you derive heuristic
functions?

Relaxed Problems

« Derive admissible heuristic from exact cost
of a solution to a relaxed version of problem

For route planning, what is a relaxed problem?

Relax requirement that car has to stay on road
—> Straight Line Distance becomes optimal cost

 Cost of optimal soln to relaxed problem <
cost of optimal soln for real problem




Heuristics for eight puzzle
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 What can we relax?

Heuristics for eight puzzle
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84. 78.

Original: Tile can move from location Ato B if Ais
horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any loc A to any loc B
Cost = h; = number of misplaced tiles

Relaxed 2: Tile can move from loc Ato loc B if Ais
horizontally or vertically next to B

Cost = h, = total Manhattan distance




Need for Better Heuristics

Performance of h, (Manhattan Distance Heuristic)

8 Puzzle < 1 second
15 Puzzle 1 minute
24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation ;o

Creating New Heuristics

+ Given admissible heuristics hy, h,, ..., h,
none of them dominating any other, how to
choose the best?

« Answer: No need to choose only one! Use:
h(n) = max {h;(n), h,(n), ..., h,(n)}
* his admissible (why?)
* h dominates each individual h; (by construction)
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P atte rn D atab aseS [Culberson & Schaeffer 1996]

 |dea: Use solution cost of a subproblem as
heuristic. For 8-puzzle: pick any subset of tiles
* E.g., 3tiles
» Precompute atable

Compute optimal cost of solving just these tiles
* This is a lower bound on actual cost with all tiles
For all possible configurations of these tiles
» Could be several million
Use breadth first search back from goal state
« State = position of just these tiles (& blank)
« Admissible heuristic hpg for complete state = cost
of corresponding sub-problem state in database

Adapted from Richard Korf presentation  ,,

Combining Multiple Databases

* Repeat for another subset of tiles
Precompute multiple tables

+ How to combine table values?
Use the max trick!

» E.g. Optimal solutions to Rubik’s cube
First found w/ IDA* using pattern DB heuristics
Multiple DBs were used (diff subsets of cubies)
Most problems solved optimally in 1 day
Compare with 574,000 years for IDS

Adapted from Richard Korf presentation 29
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Drawbacks of Standard Pattern DBs

- Since we can only take max
Diminishing returns on additional DBs

- Would like to be able to add values

* But not exceed the actual solution cost (admissible)
* How?

Adapted from Richard Korf presentation 52

Disjoint Pattern DBs

* This makes sure costs are disjoint

* Can be added without overestimating!
* E.g. 8 tile DB has 519 million entries
+ And 7 tile DB has 58 million

* During search
Look up costs for each set in DB
Add values to get heuristic function value

Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation

- Partition tiles into disjoint sets =>4
For each set, precompute table
' . . 9|10|1112
Don't count moves of tiles not in set
1314 |15 ||
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Performance of Disjoint PDBs

* 15 Puzzle: 2000x speedup vs Manhattan dist

IDA* with the two DBs solves 15 Puzzles
optimally in 30 milliseconds

» 24 Puzzle: 12 millionx speedup vs Manhattan
IDA* can solve random instances in 2 days

Uses DBs for 4 disjoint sets as shown

Each DB has 128 million entries o
Without PDBs: 65,000 years

Adapted from Richard Korf presentation

Next Time

* Local search
 Gaming search and searching for Games
* To do: Project #1, Reading
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