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Neural Networks 
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Recall: Classification Problem 

How do we build a classifier to distinguish 

between faces and other objects? 
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The human brain is extremely 
good at classifying images 

Can we develop classification methods by 
emulating the brain? 
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Neurons (Brain Cells) 

 
Inputs 

Output spike 

(electrical pulse) 

Output spike roughly dependent on whether 
weighted sum of inputs reaches a threshold 

Synapse (a connection) 
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Neurons as “Threshold Units” 

Artificial neuron “spikes” (output =  +1) if 
weighted sum exceeds threshold 

 

Inputs uj 

(-1 or +1) 
Output vi 

(+1 or -1) 

Weighted Sum Threshold 
w1i 

w2i 

w3i 

otherwise 1- and  if 1Output ij
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Synaptic weights 
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Neurons are Classifiers! 

Each “neuron” defines a hyperplane 
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Spike = +1 output (class C1) 

No spike = -1 output (class C2) 
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Neurons can compute functions 

Example: AND function 
 

A separating hyperplane 

v 

u1 u2 

 = 1.5 
(1,1) 

1 

-1 

1 

-1 
u1 

u2 -1 -1 -1 

1 -1 -1 

-1 1 -1 

1 1 1 

u1 u2 AND 

v = 1 iff u1 + u2 – 1.5 > 0 

Similarly for OR and NOT 
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What about the XOR function? 

(-1,1) 

1 

-1 

1 

-1 
u1 

u2 
-1 -1 -1 

1 -1 1 

-1 1 1 

1 1 -1 

u1 u2 XOR 

Can a neuron separate the +1 outputs 
from the -1 outputs? 

? 

(1,-1) 
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Linear Inseparability 

Artificial neuron with threshold fails if classification 
task is not linearly separable 

• Example: XOR 

• No single line can separate the “yes” (+1) 

 outputs from the “no” (-1) outputs! 

Minsky and Papert’s book 
showing such negative 
results put a damper on 
neural networks research 
for over a decade! 

1 

-1 

1 

-1 
u1 

u2 

X 

How do we deal with linear 
inseparability? 
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Multilayer Networks 

Removes limitations of single-layer networks 

• Can solve XOR 

Example: Two-layer network that computes XOR 

 

 

 

 

 

 

 

 

Output is +1 if and only if x + y – 2*(x + y > 1.5?) – 0.5 > 0 

 

 

x y 
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Perceptron 
Fancy name for layered “feed-forward” network (no 
loops) 

Network of artificial neurons (“units”) with binary inputs 
and binary outputs (+1 or -1) 

 

 

Multilayer 

Single-layer 
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What if we want to learn 
continuous-valued functions? 

Input 

Output 

This is called “regression” (or curve fitting) in statistics 
• E.g., Linear regression = fitting a line to a set of points  
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Regression using Neural Networks 

We want networks that can learn a function 

• Network maps real-valued inputs to real-valued 
output 

Continuous output values  

Can’t use binary threshold units 

anymore 
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Sigmoid Neurons 

Input nodes ae
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Sigmoid output function: 

Non-linear “squashing” function: Squashes input to be between 0 

and 1. Parameter  controls the slope.. 

g(a) 

)( uw g

u = (u1     u2     u3)
T 

w 

Output v = 
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Learning the weights  

Given: Training data (input u, desired output d) 

Problem: How do we learn the weights w? 

Idea: Minimize squared error between network’s 
output and desired output: 

 2)()( vdE w

)( uw  gvwhere 

Starting from random values for w, want to 

change w so that E(w) is minimized – How? 

)( uw g

u = (u1     u2     u3)
T 

w 

v = 
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Learning by Gradient-Descent 
(opposite of “Hill-Climbing”) 

Change w so that E(w) is minimized 

• Use Gradient Descent: Change w in proportion to 
–dE/dw  (why?) 

uuw
ww

)()(2)(2  gvd
d

dv
vd

d

dE

Derivative of 
sigmoid 

delta = error 

Also known as the “delta rule” or 

“LMS (least mean square) rule” 

w
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d
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But wait! 

This rule is for a one layer network 

• One layer networks are not that interesting!!  

 (remember XOR?)  

What if we have multiple 

layers? 
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Learning Multilayer Networks 
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Start with random weights W, w 

 

Given input vector u, network 

produces output vector v 

 

Use gradient descent to find W 

and w that minimize total error 

over all output units (labeled i):  
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This leads to the famous “Backpropagation” learning rule 
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Backpropagation: Output Weights 
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Learning rule for hidden-output weights W: 
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Backpropagation: Hidden Weights 
)( j

j

ji

m

i xWgv 

ku






















 kk

k

kjji

j

jjiii

ikj

kj

j

jkjkj

kjkj

uuwgWxWgvd
dw

dE

dw

dx

dx

dE

dw

dE

dw

dE
ww

)()()(

 :    But {chain rule} 

)( k

k

kjj uwgx 

Learning rule for input-hidden weights w: 

2)(
2

1
),( i

i

i vdE  wW

22 

Next Time 

• Wrap up of machine learning 

• Learning to drive using neural networks 

• Ensemble learning 

• To Do:  

• Project 4 due this Wednesday! 

• Read Chapter 18 


