
1

CSE 473

Lecture 26
(Chapter 18)

Neural Networks

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

2

Recall: Classification Problem

How do we build a classifier to distinguish

between faces and other objects?

2

The human brain is extremely
good at classifying images

Can we develop classification methods by
emulating the brain?

4

Neurons (Brain Cells)

Inputs

Output spike

(electrical pulse)

Output spike roughly dependent on whether
weighted sum of inputs reaches a threshold

Synapse (a connection)

3

5

Neurons as “Threshold Units”

Artificial neuron “spikes” (output = +1) if
weighted sum exceeds threshold

Inputs uj

(-1 or +1)
Output vi

(+1 or -1)

Weighted Sum Threshold
w1i

w2i

w3i

otherwise 1- and if 1Output ij

j

jiuw  

Synaptic weights

6

Neurons are Classifiers!

Each “neuron” defines a hyperplane

0 ij

j

jiuw 

Spike = +1 output (class C1)

No spike = -1 output (class C2)

u1

u
2

0 ij

j

jiuw 

ij

j

jiuw 

ij

j

jiuw 

4

7

Neurons can compute functions

Example: AND function

A separating hyperplane

v

u1 u2

 = 1.5
(1,1)

1

-1

1

-1
u1

u2 -1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT

8

What about the XOR function?

(-1,1)

1

-1

1

-1
u1

u2
-1 -1 -1

1 -1 1

-1 1 1

1 1 -1

u1 u2 XOR

Can a neuron separate the +1 outputs
from the -1 outputs?

?

(1,-1)

5

9

Linear Inseparability

Artificial neuron with threshold fails if classification
task is not linearly separable

• Example: XOR

• No single line can separate the “yes” (+1)

 outputs from the “no” (-1) outputs!

Minsky and Papert’s book
showing such negative
results put a damper on
neural networks research
for over a decade!

1

-1

1

-1
u1

u2

X

How do we deal with linear
inseparability?

6

11

Multilayer Networks

Removes limitations of single-layer networks

• Can solve XOR

Example: Two-layer network that computes XOR

Output is +1 if and only if x + y – 2*(x + y > 1.5?) – 0.5 > 0

x y

12

Perceptron
Fancy name for layered “feed-forward” network (no
loops)

Network of artificial neurons (“units”) with binary inputs
and binary outputs (+1 or -1)

Multilayer

Single-layer

7

What if we want to learn
continuous-valued functions?

Input

Output

This is called “regression” (or curve fitting) in statistics
• E.g., Linear regression = fitting a line to a set of points

14

Regression using Neural Networks

We want networks that can learn a function

• Network maps real-valued inputs to real-valued
output

Continuous output values 

Can’t use binary threshold units

anymore

8

15

Sigmoid Neurons

Input nodes ae
ag




1

1
)(

a

(a)
1

Sigmoid output function:

Non-linear “squashing” function: Squashes input to be between 0

and 1. Parameter  controls the slope..

g(a)

)(uw g

u = (u1 u2 u3)
T

w

Output v =

16

Learning the weights

Given: Training data (input u, desired output d)

Problem: How do we learn the weights w?

Idea: Minimize squared error between network’s
output and desired output:

 2)()(vdE w

)(uw  gvwhere

Starting from random values for w, want to

change w so that E(w) is minimized – How?

)(uw g

u = (u1 u2 u3)
T

w

v =

9

Learning by Gradient-Descent
(opposite of “Hill-Climbing”)

Change w so that E(w) is minimized

• Use Gradient Descent: Change w in proportion to
–dE/dw (why?)

uuw
ww

)()(2)(2  gvd
d

dv
vd

d

dE

Derivative of
sigmoid

delta = error

Also known as the “delta rule” or

“LMS (least mean square) rule”

w
ww

d

dE


18

But wait!

This rule is for a one layer network

• One layer networks are not that interesting!!

 (remember XOR?)

What if we have multiple

layers?

10

19

Learning Multilayer Networks

2)(
2

1
),(i

i

i vdE  wW

Start with random weights W, w

Given input vector u, network

produces output vector v

Use gradient descent to find W

and w that minimize total error

over all output units (labeled i):

))((k

k

kj

j

jii uwgWgv 

ku

This leads to the famous “Backpropagation” learning rule

20

Backpropagation: Output Weights

j

j

jjiii

ji

ji

jiji

xxWgvd
dW

dE

dW

dE
WW

)()(

 

{delta rule}

)(j

j

jii xWgv 

ku

jx

Learning rule for hidden-output weights W:

2)(
2

1
),(i

i

i vdE  wW

{gradient descent}

11

21

Backpropagation: Hidden Weights
)(j

j

ji

m

i xWgv 

ku






















 kk

k

kjji

j

jjiii

ikj

kj

j

jkjkj

kjkj

uuwgWxWgvd
dw

dE

dw

dx

dx

dE

dw

dE

dw

dE
ww

)()()(

 : But {chain rule}

)(k

k

kjj uwgx 

Learning rule for input-hidden weights w:

2)(
2

1
),(i

i

i vdE  wW

22

Next Time

• Wrap up of machine learning

• Learning to drive using neural networks

• Ensemble learning

• To Do:

• Project 4 due this Wednesday!

• Read Chapter 18

