CSE 473

Lecture 26
(Chapter 18)

Neural Networks

PN

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Recall: Classification Problem

How do we build a classifier to distinguish
between faces and other objects?




The human brain is extremely
good at classifying images

Can we develop classification methods by
emulating the brain?

Neurons (Brain Cells)

Dendrites

/\ Synapse (a connection)

Myelingted axon

Axon hillock

O Output spike
/K (electrical pulse)

Output spike roughly dependent on whether
weighted sum of inputs reaches a threshold




Neurons as “Threshold Units”

Synaptic weights
Py

Wi Weighted Sum Threshold

Inputs Uy - Wy Output v
(torst) —=—>—f 3} (1 or-1)
W3i

i
Output+1if > w;u; > 4 and - 1otherwise
j

Artificial neuron "spikes” (output = +1)if
weighted sum exceeds threshold

Neurons are Classifiers!
Each “neuron” defines a Ayperplane ) wju;—u =0
Spike = +1 output (class C,) |
Zj:wjiuj > 1
! ;Wjiu =1 =0

. No spike = -1 output (class C,)
. ijiuj S 4
i

Uy




Neurons can compute functions

Example: AND function

Uy

-1

A separating hyperplane
u, AND
-1 u

-1

1

1

1 Ny (111) \
- ) ]i\ L M = 1.5
‘1 \\ u w, =1 w, =1
1 -1 187
(8} -1 (¢ ul UZ

v=1iff y;+u,-15>0
Similarly for OR and NOT

What about the XOR function?

u; u, XOR
-1(-1| -1
1 -1 1
101 ] 1
1 1] -1

(1’-1)

Can a neuron separate the +1 outputs
from the -1 outputs?




Linear Inseparability

Artificial neuron with threshold fails if classification
task is not linearly separable

+ Example: XOR
* No single line can separate the “yes"” (+1)
outputs from the “no” (-1) outputs!

Minsky and Papert's book
showing such negative
results put a damper on
neural networks research
for over a decadel!

How do we deal with linear
inseparability?




Multilayer Networks

Removes limitations of single-layer networks
* Can solve XOR
Example: Two-layer network that computes XOR

(03

(1)

Output is +1 if and only if x +y - 2*(x +y>15?2)-05>0

1

Perceptron

Fancy name for layered “feed-forward” network (no
loops)

Network of artificial neurons ("units”) with binary inputs
and binary outputs (+1 or -1)
Multilayer

Single-layer

AN

12




What if we want to learn
continuous-valued functions?

Output fix)

Input

a8

This is called “regression” (or curve fitting) in statistics
» E.g., Linear regression = fitting a line to a set of points

Regression using Neural Networks

We want networks that can learn a function

- Network maps real-valued inputs to real-valued
output

Qutput

Continuous output values -
Can’t use binary threshold units
anymore

14




Sigmoid Neurons

v=g(w-u) Output Sigmoid output function:

a) =
Input nodes 9(@) 1+e

9(a)
1"‘/

a

u=(u; U, uy)'

Non-linear “squashing” function: Squashes input to be between 0
and 1. Parameter (3 controls the slope..

15

Learning the weights

Given: Training data (input u, desired output d)
Problem: How do we learn the weights w?

Idea: Minimize squared error between network's
output and desired output: | - gw-u)

E(w)=(d —-v)° W
where v =g(wW-U)

Starting from random values for w, want to
change w so that E(w) is minimized — How?

16




Learning by 6radient-Descent
(opposite of “Hill-Climbing")
Change w so that Hw) is minimized

* Use Gradient Descent: Change w in proportion to
-d£/dw (why?)

dE L
W-oW-—-—¢g—— Derivative of

dw sigmoid
dE dv ' /
— =-2(d —=v)—=-2(d —v)g'(w-u)u
dw dw —
delta = error

Also known as the “delta rule” or
“LMS (least mean square) rule”

But waif!

This rule is for a one layer network
* One layer networks are not that interestingll
(remember XOR?)

What if we have multiple




Learning Multilayer Networks

Start with random weights W, w
v, = 9 W, 90X wyu,) :
j k
Given input vector u, network
produces output vector v

Use gradient descent to find W
and w that minimize total error
over all output units (labeled 1):

EW,w) =23 (d, -v)°

i
This leads to the famous “Backpropagation” learning rule

19

Backpropagation: Output Weights
Vi = g(ZWjin)

E(W,w) =%Z(di -V )’

Learning rule for hidden-output weights W:

W, >W, —gddWE

ji

{gradient descent}

dE
dw

=—(d; -v, )g’(E ,Wjin)Xj {delta rule}
ji i
20




Backpropagation: Hidden Weights

EW.W) =2 (d v’

Learning rule for input-hidden weights w:

w, >w, —eJE gy, dE _dE 0,
4 K W “dwy dx; dw

dE :{_Z(di _Vi)g'(ZWjixj)Wji}-[g’(ZijUk)Uk}

dw

{chain rule}

21

Next Time

* Wrap up of machine learning
* Learning to drive using neural networks
« Ensemble learning
* To Do:
* Project 4 due this Wednesday!
* Read Chapter 18

22




