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CSE 473 
 

Lecture 24 
(Chapter 18) 

 

Decision Trees 

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore 

To play or 

not to play? 
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Goal: Learn the function “PlayTennis?” from example data 

Day Outlook Humid Wind PlayTennis?  “yes” (y) or “no” (n) 
d1 s    h    w       n 
d2 s    h     s       n 
d3 o    h    w       y 
d4 r    h    w        y 
d5 r    n    w       y 
d6 r    n     s       y 
d7 o    n     s       y 
d8 s    h    w       n 
d9 s    n    w       y 
d10 r    n    w       y 
d11 s    n     s       y 
d12 o    h     s       y 
d13 o    n    w       y 
d14 r    h     s       n 

• Outlook = 
sunny, 
overcast, or 
rain 
 

• Humidity = 
high, or 
normal 
 

• Wind = weak 
or strong 

Input Attributes Output 
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A Decision Tree for the Same Data 

Outlook 

Humidity Wind 

Yes Yes 

Yes 

No No 

Sunny Overcast Rain 

High Strong Normal Weak 

                        Decision Tree for “PlayTennis?” 

Leaves = classification output 

Arcs = choice of value 

  for parent attribute 

Decision tree equivalent to logical statment in disjunctive normal form 

PlayTennis   (Sunny  Normal)  Overcast  (Rain  Weak) 
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Decision Trees 

• Input: Set of attributes describing an object or 
situation  

• Output: Predicted output value for the input 

• Decision tree is consistent if it produces the correct 
output on all training examples 

• Input and output can be discrete or continuous 
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Example: Decision Tree for Continuous Values 

x1 

x2  
 
How do we branch on 
attribute values x1 and x2 
to partition the space and 
generate correct outputs? 

Input: Continuous-valued attributes (x1,x2) 
Output: 0 or 1  
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Example: Classification of Continuous Valued Inputs 

3 

4 

Decision Tree 

x1 

x2 
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Expressiveness of Decision Trees 

 Decision trees can express any function of the input 

attributes. 

 E.g., Boolean functions, truth table row = path to leaf: 

 

 

 

 

 Trivially, there is a consistent decision tree for any training 

set with one path to leaf for each example 

 But most likely won't generalize to new examples 

 Prefer to find more compact decision trees 

Learning Decision Trees 

 Example: When should I wait for a table at a 

restaurant? 
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Learning Decision Trees 

 Example: When should I wait for a table at a 

restaurant? 
 

 Attributes (features) relevant to Wait? decision: 

1. Alternate: is there an alternative restaurant nearby? 

2. Bar: is there a comfortable bar area to wait in? 

3. Fri/Sat: is today Friday or Saturday? 

4. Hungry: are we hungry? 

5. Patrons: number of people in the restaurant (None, Some, Full) 

6. Price: price range ($, $$, $$$) 

7. Raining: is it raining outside? 

8. Reservation: have we made a reservation? 

9. Type: kind of restaurant (French, Italian, Thai, Burger) 

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60) 
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A “personal” decision tree  
 A decision tree for Wait? based on personal “rules of thumb”: 
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Input Data for Learning 

 Past examples when I did/did not wait for a table: 
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Decision Tree Learning 

 Aim: Find a small tree consistent with training examples 

 Idea: (recursively) choose "most significant" attribute as 

root of (sub)tree 
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Choosing an attribute to split on 

 Idea: a good attribute should reduce uncertainty 

 E.g., splits the examples into subsets that are 

(ideally) "all positive" (T) or "all negative“ (F) 

 

 
 

 

 

 

 

 

 

 Patrons? is a better choice 

For Type?, to wait or not 
to wait is still at 50% 

Reduce uncertainty? 

How do you quantify uncertainty? 

http://a.espncdn.com/media/ten/2006/0306/photo/g_mcenroe_195.jpg 
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Use information theory! 

 Entropy measures the amount of 

uncertainty in a probability distribution 

 

 Entropy (or information content in bits) 

of an answer to a question with n 

possible answers v1, … , vn: 

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi) 

 

n 
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Using information theory 

 Suppose we have p examples with Wait = True 

(positive) and n examples with Wait = false (negative).  
 

 Our best estimate of the probabilities of Wait = true or 

false is given by: 

 

 

 Hence the entropy (in bits) is given by: 
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P(Wait = T)  
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 Entropy is 
highest 
when 
uncertainty 
is greatest 

Wait = T 

Wait = F 

18 

 Idea: a good attribute should reduce 

uncertainty and result in “gain in information” 

 How much information do we gain if we 

disclose the value of some attribute? 

 

 Answer: 

    uncertainty before – uncertainty after 

 

Choosing an attribute to split on 
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Back at the Restaurant 

Before choosing an attribute:  

Entropy = - 6/12 log(6/12) – 6/12 log(6/12)  

     = - log(1/2) = log(2) = 1 bit 

There is “1 bit of information to be discovered”  
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Back at the Restaurant 

 

If we choose Type: Along “French”: entropy = 1 bit. 
 Information gain = 1-1 = 0. (same for other branches) 
 

If we choose Patrons:  
In branches “None” and “Some”, entropy = 0  
For “Full”, entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92 
 Info gain = (1-0) or (1-0.92) bits > 0 in both cases 
 
So choosing Patrons gains more information! 
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Combining entropy across branches 

• Compute average entropy 
• Weight entropies according 

to probability of branches 
2/12 times we entered “None”, 
so  weight for “None” = 1/6  
“Some” has weight: 4/12 = 1/3 
“Full” has weight: 6/12 = ½  

 

1
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2/12 4/12 6/12 
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Information gain 

 Information Gain (IG) = reduction in 

entropy from using attribute A: 

 

 

 When constructing each level of decision 

tree, choose attribute with largest IG 

IG(A) = Entropy before choosing  
   – AvgEntropy after choosing A 
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Information gain in our example 

Patrons has highest IG of all attributes 

 DTL algorithm chooses Patrons as the 

root 
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 Decision tree learned from the 12 examples: 

 

 

 

 

 

 

 

 

 

 

 Substantially simpler than “rules-of-thumb” tree 

 more complex hypothesis not justified by small amount 
of data 

Learned Decision Tree for “Wait?” 



11/30/2012 

13 

25 

Performance Evaluation 

 How do we know that the learned tree h ≈ true f ? 

 Answer: Try h on a new test set of examples 

 Learning curve = % correct on test set as a function of 

training set size 
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Generalization 

 How do we know the classifier function we 

have learned is good? 

 Look at generalization error on test data 

 Method 1: Split data into separate training and test 

sets (the “hold out” method) 

 Method 2: Cross-Validation 
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Cross-validation 
 K-fold cross-validation:  

 Divide data into K subsets of equal size 

 Train learning algorithm K times, leaving out 

one of the subsets. Compute error on       

left-out subset 

 Report average error over all subsets 

 Leave-1-out cross-validation:  

 Train on all but 1 data point, test on that data 

point; repeat for each point 

 Report average error over all points 
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Next Time 

 Other classification methods 

 Nearest Neighbor 

 Support Vector Machines 

 To Do:  

 Project 4 

 Read Chapter 18 


