CSE 473
Lecture 23

(Chapters 15 & 18)

Particle Filters and
Supervised Learning

DOGBERT CONSULTS

| ¥YOU MEED TO DO
DATA MINING
TO UNCOVER
HIDDEN SALES

TRENDS.

IF YOU MINE THE
DATA HARD
ENOUGH, YOU CAN
ALSO FIND
MESSAGES FROM
GOD.

.. .SALES TO LEFT
HAMNDED SQUIRRELS
ARE UP. . AND GOD
SAYS YOUR TIE
DOESNT GO WITH
THAT SHIRT.

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Pac-Man
does not

Ghostbusters

know true

Gets noisy
NEESIEE o

position of
the ghost

Manhattan
distance to ghost

Must infer probability distribution over
true ghost position
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Hidden Markov Model (HMM)

Hidden State at
timet=1,2,...,N

Emissions
(measurements) at
timet=1,2,...,N

HMM is defined by 2 conditional probabilities:
P(Xt | Xt_l) Transition model =P(X'| X)

P(E,| X,)  Emissionmodel =P(E|X)

(aka measurement/observation model)

plus initial state distribution P(X,)

Ghostbusters HMM

= P(X;) = uniform P(X,) 1/9 1/9

1/9 1/9

= P(X'|X) = ghost usually moves clockwise, el
but sometimes moves in a random direction
or stays in place
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» P(E|X) = compute Manhattan distance to
ghost from Pac-Man and emit a noisy
distance given this true distance (see
example for true distance = 8)
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HMM Inference Problem

now?

= Given evidence E;,..., E, = E,.,=ey,

Where is the ghost

Compute posterior
probability over X,

= Inference problem (aka Filtering): Find

posterior P(X)|e,.,) for current ¢

The “Forward” Algorithm for Filtering

P(X,|e,....e) =a P(e | X,,e,....,e.,) P(X,|e,..., e.,)
=a P(e | X,) ZP(Xt | X )P(X g6y,

thl
Normali-
zation
constant

Previous
estimate

Transition
model

Emission
model

New
estimate

Bayes

e ) Markov +
[ M . .
arginalize

At each time step t, compute and maintain a table of

P values over all possible values of X
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Filtering using the Forward Algorithm

P(X, |e,...,e) isan array of 12 x18 =216 values
(one for each location)

Particle Filtering
= Sometimes |X] is too big for exact inference 00 oz oo
= |X| may be too big to even store P(X, |e,) | ]
E.g. when X is continuous 00 | 0.0 | 0.2
= Solution: Approximate inference 00 | 02 | 05
= Track a set of samples of X v
= Samples are called particles
= Number of samples for X=x is ®
proportional to probability of x N
0
00 | ¢%




Representation: Particles

= Our representation of P(X) is
now a list of N particles
(samples)
= Generally, N << |X]

= P(x) approximated by number of
particles with value x

» Note: Many x will have P(x) = 0!
= More particles, more accuracy

= |nitially, all particles have a
“‘weight” of 1

Particles:
(1,2)
(2,3)
(2,3)
(3.2)
(3.2)

(3.3)
(3.3)
(3.3)
(3.3)
(3.3)

Particle Filtering

Step 1: Elapse Time

= Each particle x is moved by
sampling its next position using
the transition model

¢’ = sample(P(X'|x))
= Samples’ frequencies reflect the

transition probs

* In example, most samples move
clockwise, but some move in
another direction or stay in place

= This step captures passage of time

11/26/2012



11/26/2012

Particle Filtering
Step 2: Observe

Weight particles according to evidence

= Assign weights w to samples based ®
on the new observed evidence e
e (oo
w(z) = P(elx) -
® oo ©©
» In example, true ghost position is shown
in red outline; samples closer to ghost v

get higher weight (bigger size of circles)
based on noisy distance emission

model
("] e e
° o.o 20
Particle Filtering
Step 3: Resample
H Old Particles:
= Ntimes, we choose (1.3) we0.1
from our weighted (32) w=09
sample distribution Do
(i.e. randomly select (2,3) w=0.3 ® | e
. (2,2) w=0.4
with replacement) (3.3) w=0.4 °
» Each sample selected (3,3) w=0.4 ° eo@|°°
: . (3,2) w=0.9
with probability (2,3) w=0.3
proportional to its v
weight New Particles:
(3,2) w=1
(3,2) w=1
. 3,2) w=1
= Now the update is %) wet
complete for this gg; wel C
time step, continue (3.1) w=1 oo
; (3.3) w=1
with the next one (3.2 wel o0 o | ©®
(3,1) w=1




Particle Filtering Summary

= Represent current belief P(X | evidence to date)
as set of N samples (actual values x)

= For each new observation e:
1. Sample transition, once for each current particle x
' = sample(P(X'|x))

2. For each new sample x’, compute importance weights
for the new evidence e:

w(z') = Ple|lz’)

3. Finally, resample the importance weights to create N
new particles

Example 1

Patrticle filter, uniform initial beliefs, 25 particles
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Example 2

Particle filter, uniform initial beliefs, 300 particles

Yesterday’s headline:

Ehe New fJork Eumes

Scientists See Promise in Deep-Learning Programs

Machine learning everywhere!

TheSeatileTimes  [,ocal News

Winner of a 2012 Pulitzer Prize

Home | News | Business&Tech | Spois | Entetainment | Liing | F

N THE NEWS: Holday events | Bellevue light ral | Apple Cup aftermath | Gharter schools | Fun

UW recruits superstars of
computer-science world

The University of Washington has landed four new faculty members
considered among the brightest in the world of computer science.

012 2t 7:20 PIA | Page

@ PRWeb

Oriene Viibity from Vocus
HOME NEWS CENTER BLOG

Sanday, November 26, 212

Beware of the New "Machine Learning" IRS Tax Audit
Advises Former IRS Manager

“The public should be aware that the IRS has begun using a new audit method, the”
Machine Learning Tax Audit”, states Michael Sullivan of Fresh Start Tax and a former
IRS Agent. "This new system will all 'S to conduct more audits on a yearly
basis, which will create more IRS tax problems and tax debt for individuals "
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The “three V's”, i.e the Volume, Variety and Velocity
of the data coming in is what creates the challenge.

: m ]
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LATIN
AMERICA
Big Data is data that is too large,

complex and dynamic for any ®
conventional data tools to capture,
store, manage and analyze.

The right use of Big Data allows
analysts to spot trends and gives

niche insights that help create PEOPLE T0
value and innovation much faster PEOPLE MACHINE MACHINE 2 9 zo
than conventional methods. TO PEOPLE ARCHIVES, MEDICAL TO MACHINE L] 5
S DEVICES, DIGITAL TV, CEHCRHG. (P — MILLION HOURS
NETIZENS, VIRTUAL ] SENSORS, GPS DEVICES,
COMMUNITIES, E-COMMERCE, SMART BAR CODE SCANNERS EMAILS oFvipgo | MILLION
SOCIAL NETWORKS, | CARDS, BANK CARDS, SURVEILLANCE CAMERAS, | SENT EVERY = UPLOADED | TWEETS
WEB LOGS COMPUTERS, MOBILES... | SCIENTIFIC RESEARCH.. SECOND EVERY MIN | PER DAY

Varieties of Machine Learning

= Supervised learning: correct answers for each
input is provided, goal is to generalize to new data
= E.g., decision trees, neural networks

= Unsupervised learning: correct answers not
given, must discover patterns in input data
» E.g., clustering, principal component analysis

= Reinforcement learning: occasional rewards (or
punishments) given to guide behavior
= We've covered this already! (Q-learning, MDPs)
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Supervised Learning

= Classification
= Decision trees
» K-nearest neighbor
» Linear Classifiers
» Support Vector Machines (SVMs)
= Cross validation

= Regression

» Linear regression and Neural networks
= Backpropagation learning algorithm

Supervised learning

» Goal: Construct a function h from training data to
approximate the hidden function f that is
generating the data

= his consistent if it agrees with f on all training examples

ftx)
[}

E.g., curve fitting (aka
regression)

X Given: Data points (x,f{x))
(training examples)
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Supervised learning example

h = Straight line?
f(x)
'

Lot §

21

Supervised learning example

What about a quadratic function?
fix)
A

bt

e

fella?
-

22

| What about
-~ e i
this littl
L},J/ H / a2 )
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Supervised learning example

Finally, a function that satisfies all!
(consistent function)

fix)
|

23

Supervised learning example
But so does this one...
fix)

|

24
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Ockham’s Razor Principle

fix)
alll
L N

Prefer the simplest hypothesis consistent with data
+ Related to KISS principle ("keep it simple stupid”)
* Smooth blue function preferable over wiggly yellow one
« If noise known to exist in data, even linear might be
better (the lowest x might be due to noise)

25

Next Time

= Learning Decision Trees from data
= Nearest Neighbor classification
= To Do:

= Project 4

» Read Chapter 18

26
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