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CSE 473 
 

Lecture 23 
(Chapters 15 & 18) 

 

Particle Filters and  

Supervised Learning 

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore 

Ghostbusters 
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Must infer probability distribution over 

true ghost position 

Pac-Man 

does not 

know true 

position of 

the ghost 

Gets noisy 

measurements of 

Manhattan 

distance to ghost 
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Hidden Markov Model (HMM) 
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Hidden State at 

time t = 1, 2,…,N 

Emissions 
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time t = 1, 2,…,N 

HMM is defined by 2 conditional probabilities: 

 

 

 

 

plus initial state distribution  
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Transition model 

Emission model 
(aka measurement/observation model) 
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Ghostbusters HMM 

 P(X1) = uniform 

 

 P(X’|X) = ghost usually moves clockwise, 

but sometimes moves in a random direction 

or stays in place 

 

 

 

 P(E|X) = compute Manhattan distance to 

ghost from Pac-Man and emit a noisy 

distance given this true distance (see 

example for true distance = 8) 
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HMM Inference Problem 

 Given evidence E1,…, Et = E1:t =e1:t 

 Inference problem (aka Filtering): Find 

posterior P(Xt|e1:t) for current t 

 

X2 

E1 

X1 X3 X4 

E1 E3 E4 

Xt 

Et 

Where is the ghost 

now? 

Compute posterior 

probability over Xt 

The “Forward” Algorithm for Filtering 
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model 

Previous 

estimate 

New 

estimate 

Normali-

zation 

constant 

Bayes 

Markov + 

Marginalize 

At each time step t, compute and maintain a table of 

P values over all possible values of X 
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Filtering using the Forward Algorithm 
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Particle Filtering 

 Sometimes |X| is too big for exact inference 

 |X| may be too big to even store 

    E.g. when X is continuous 
 

 Solution: Approximate inference 

 Track a set of samples of X 

 Samples are called particles 

 Number of samples for X=x is  

    proportional to probability of x 
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Representation: Particles 

 Our representation of P(X) is 

now a list of N particles 

(samples) 

 Generally, N << |X| 

 P(x) approximated by number of 

particles with value x 

 Note: Many x will have P(x) = 0!  

 More particles, more accuracy 

 Initially, all particles have a 

“weight” of 1 

Particles: 

    (1,2) 

    (2,3) 

    (2,3)    

    (3,2) 

    (3,2) 
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Particle Filtering 

Step 1: Elapse Time 

 Each particle x is moved by 
sampling its next position using 
the transition model 

 

 

 Samples’ frequencies reflect the 
transition probs 

 In example, most samples move 
clockwise, but some move in 
another direction or stay in place 

 

 This step captures passage of time 
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Particle Filtering 

Step 2: Observe 

   Weight particles according to evidence 

 Assign weights w to samples based 
on the new observed evidence e 

 

 

 In example, true ghost position is shown 
in red outline; samples closer to ghost 
get higher weight (bigger size of circles) 
based on noisy distance emission 
model 

Particle Filtering 

Step 3: Resample 

 N times, we choose 
from our weighted 
sample distribution 
(i.e. randomly select 
with replacement) 

 Each sample selected 
with probability 
proportional to its 
weight 

 

 Now the update is 
complete for this 
time step, continue 
with the next one 

Old Particles: 

    (1,3) w=0.1 

    (3,2) w=0.9 

    (3,2) w=0.9   

    (3,1) w=0.4 

    (2,3) w=0.3 

    (2,2) w=0.4 

    (3,3) w=0.4 

    (3,3) w=0.4 

    (3,2) w=0.9 

    (2,3) w=0.3 

New Particles: 

    (3,2) w=1 

    (3,2) w=1 

    (3,2) w=1   

    (2,3) w=1 

    (2,2) w=1 

    (3,2) w=1 

    (3,1) w=1 

    (3,3) w=1 

    (3,2) w=1 

    (3,1) w=1 
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Particle Filtering Summary 

 Represent current belief P(X | evidence to date)             

as set of N samples (actual values x) 

 For each new observation e: 

1. Sample transition, once for each current particle x 

2. For each new sample x’, compute importance weights 

for the new evidence e: 

3. Finally, resample the importance weights to create N 

new particles  

Example 1 

Particle filter, uniform initial beliefs, 25 particles 
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Example 2 

Particle filter, uniform initial beliefs, 300 particles 

Machine learning everywhere! 

Yesterday’s headline: 
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Why all the hubbub, bub? 

Varieties of Machine Learning 

 Supervised learning: correct answers for each 

input is provided, goal is to generalize to new data 

 E.g., decision trees, neural networks 

 

 Unsupervised learning: correct answers not 

given, must discover patterns in input data 

 E.g., clustering, principal component analysis 

 

 Reinforcement learning: occasional rewards (or 

punishments) given to guide behavior 

 We’ve covered this already! (Q-learning, MDPs) 
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Supervised Learning 

 Classification 

 Decision trees 

 K-nearest neighbor 

 Linear Classifiers 

 Support Vector Machines (SVMs) 

 Cross validation 

 Regression 

 Linear regression and Neural networks 

 Backpropagation learning algorithm 

Supervised learning 

 Goal: Construct a function h from training data to 

approximate the hidden function f that is 

generating the data 

 h is consistent if it agrees with f on all training examples 

 

 

Given: Data points (x,f(x)) 
(training examples) 

E.g., curve fitting (aka 

regression) 
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Supervised learning example 

h = Straight line? 
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Supervised learning example 

What about a quadratic function? 

 

What about 
this little 
fella? 
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Supervised learning example 

 

 

Finally, a function that satisfies all!  

(consistent function) 
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But so does this one… 
 

Supervised learning example 
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Ockham’s Razor Principle 

Prefer the simplest hypothesis consistent with data 
• Related to KISS principle (“keep it simple stupid”) 
• Smooth blue function preferable over wiggly yellow one 
• If noise known to exist in data, even linear might be 

 better (the lowest x might be due to noise) 
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Next Time 

 Learning Decision Trees from data 

 Nearest Neighbor classification 

 To Do:  

 Project 4 

 Read Chapter 18 


