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CSE 473 
 

Lecture 22 
(Chapters 14 & 15) 

 

Probabilistic Inference and  

Hidden Markov Models 

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore 
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Recall: Probabilistic Inference 

 Full joint distribution allows inference of 

all types of probabilities  
 E.g. Given random variables A, B, E, J, M,  

    if you want P(B|J,M): 

 

 

 Problem: Full joint requires you to specify 

2*2*2*2*2 = 32 values 

 

P(B|J,M) =  P(B,J,M) =  E,A P(B,J,M,E,A) 
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Solution: Bayesian networks 

 Simple graphical notation for conditional 

independence assertions 

 In many cases, allows compact specification 

of full joint distributions 

 Example BN for A, B, E, J, M 
 

P(J,M,A,B,E) =  

πi  P (Xi | Parents(Xi)) = 

P(J|A) P(M|A) P(A|B,E) P(B) P(E)  

  Only requires 2+2+4+1+1=10 values  

Keep applying definition of 

conditional probability: 

P(J,M,A,B,E) =  

= P(J|M,A,B,E) P(M,A,B,E) 

= P(J|A) P(M,A,B,E) 

= P(J|A) P(M|A,B,E) P(A,B,E) 

= P(J|A) P(M|A) P(A,B,E) 

= P(J|A) P(M|A) P(A|B,E) P(B,E) 

= P(J|A) P(M|A) P(A|B,E) P(B) P(E) 

Why is joint = πi  P (Xi | Parents(Xi))? 
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Bayesian Network for Burglars and Earthquakes 
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Compute P(B=true | J=true, M=true) 

P(b|j,m) =  P(b,j,m)  

  =  e,a P(b,j,m,e,a) 

What is the probability of Burglary given that 

John and Mary called? 

=  e,a P(b) P(e) P(a|b,e) P(j|a) P(m|a)  

  =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

• Join all factors containing a 

• Sum out a to get new 

function of b,e,j,m only 
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Variable Elimination (VE) Algorithm 

Eliminate variables one-by-one until there is a factor with 

only the query variables: 

1.  join all factors containing that variable, multiplying 

probabilities 

   2. sum out the influence of the variable 

 

P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Eliminate a 

Eliminate e 

Remaining factor is a function of b, j, m 

Function of b,j,m 
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Example of VE: P(J) 

 

 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(A|B,E) P(B) P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

= AP(J|A) MP(M|A) f2(A) 

= AP(J|A) f3(A) 

= f4(J) 
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Other Inference Algorithms 
 Direct Sampling:  

 Repeat N times: 

 Use random number generator to generate sample values for 

each node 

 Start with nodes with no parents 

 Condition on sampled parent values for other nodes 

 Count frequencies of samples to get an approximation to desired 

distribution 

 Other variants: Rejection sampling, likelihood weighting, Gibbs 

sampling and other MCMC methods (see text) 

 Belief Propagation: A “message passing” algorithm for 

approximating P(X|evidence) for each node variable X 

 Variational Methods: Approximate inference using 

distributions that are more tractable than original ones 

(see text for details) 

Pac-Man goes Ghost Hunting 
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Must infer probability distribution over 

true ghost position 

Pac-Man 

does not 

know true 

position of 

the ghost 

Gets noisy 

measurements of 

Manhattan 

distance to ghost 
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Example of Ghost Tracking (movie) 
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Bayesian Network for Tracking 
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True ghost positions 

at time 1, 2,…,N 

Noisy distance 

measurements 

at time 1, 2,…,N 

True ghost 

position 

Noisy 

distance 

measurement 

X2 

Ghost 

moves! 

This “Dynamic” Bayesian network is also called a 

Hidden Markov Model (HMM) 
• Dynamic = time-dependent 

• Hidden = state (ghost position) is hidden 

• Markov = current state only depends on previous state 

      Similar to MDP (Markov decision process) but no actions 
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Hidden Markov Model (HMM) 
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Hidden State at 

time t = 1, 2,…,N 

Emissions 

(measurements) at 

time t = 1, 2,…,N 

HMM is defined by 2 conditional probabilities: 

 

 

 

 

plus initial state distribution  
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Transition model 

Emission model 
(aka measurement/observation model) 
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Project 4: Ghostbusters 

 Plot: Pacman's grandfather, Grandpac, learned 

to hunt ghosts for sport.   

 Blinded by his power, but can hear the ghosts’ 

banging and clanging sounds. 
 

 Transition Model: Ghosts move randomly, but 

are sometimes biased. 
 

 Emission Model: Pacman gets a “noisy” 

distance to each ghost. 
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Ghostbusters HMM 

 P(X1) = uniform 

 

 P(X’|X) = ghost usually moves clockwise, 

but sometimes moves in a random direction 

or stays in place 

 

 

 

 P(E|X) = compute Manhattan distance to 

ghost from Pac-Man and emit a noisy 

distance given this true distance (see 

example for true distance = 8) 
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HMM Inference Problem 

 Given evidence (all measurements made so far) 

E1:t =e1:t 

 Main inference problem: 

 Filtering: Find posterior P(Xt|e1:t) for current t 

 

X2 

E1 

X1 X3 X4 

E1 E3 E4 

Xt 

Et 

Where is the ghost 

now? 

Compute posterior 

probability over Xt 



11/19/2012 

9 

The “Forward” Algorithm for Filtering 

 Want to compute the “belief” 

 Derive belief update rule from probability definitions, Bayes’ 

rule and Markov assumption:  
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Example of Filtering (Tracking) 

using the Forward Algorithm (movie) 
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Particle Filtering Motivation 

 Sometimes |X| is too big for exact inference 

 |X| may be too big to even store Bt(X) 

    E.g. when X is continuous 

 |X|2 may be too big to do updates 
 

 Solution: Approximate inference 

 Track a set of samples of X 

 Samples are called particles 

 Number of samples for X=x is  

    proportional to probability of x 
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Next Time 

 Particle Filtering and its Applications 

 Guest lecture by Prof. Dieter Fox 

 To Do:  

 Project 4 (last project! Assigned today) 


