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CSE 473

Lecture 22
(Chapters 14 & 15)

Probabilistic Inference and
Hidden Markov Models

Recall: Probabilistic Inference

= Full joint distribution allows inference of
all types of probabilities

» E.g. Given random variables A, B, E, J, M,
if you want P(B|J,M):

P(B|T,M) = o P(B,J M) = o Z¢ , P(B,J M E,A)

» Problem: Full joint requires you to specify
2*2*2*2*2 = 32 values
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Solution: Bayesian networks

= Simple graphical notation for conditional
independence assertions

* [n many cases, allows compact specification
of full joint distributions

= Example BN for A, B, E, J, M

P(J.M,ABE)=
/® T, P (X;| Parents(X)) =
m P(JIA) P(M|A) P(A[B,E) P(B) P(E)

@ Only requires 2+2+4+1+1=10 values

Why is joint = TT; P (X;| Parents(X;))?

Keep applying definition of

conditional probability:
/.@\/@) P(T,M,ABE):=

= P(JIM,A,B,E)P(M,ABE)
@ @ =P(J|A) P(M,ABE)

= P(J|A) P(M|A,B,E) P(A,B,E)

= P(J[A) P(M|A) P(A,B,E)

= P(J|A) P(M|A) P(A|B,E) P(B,E)

= P(J|A) P(M|A) P(A|B,E) P(B) P(E)




Bayesian Network for Burglars and Earthquakes

Burglary Earthquake
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What is the probability of Burglary given that
John and Mary called?

Compute P(B=true | J=true, M=true)

P(blj,m) = o P(b,j,m) j ;
=a X, ,P(bjme,a) @ @

= a X, , P(b) P(e) P(alb.e) P(jla) P(m]|a)
= a P(b) =, P(e) =, P(alb,e)P(jla)P(m|a)

N

/ . . . \
« Join all factors containing a

* Sum out a to get new
function of b,e,j,m only
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Variable Elimination (VE) Algorithm

= Eliminate variables one-by-one until there is a factor with
only the query variables:

1. join all factors containing that variable, multiplying
probabilities

2. sum out the influence of the variable

Remaining factor is a function of b, j, m

Eliminate e
/\
- Eliminate a M

P(blj,m) = a P(b) =, P(e) =, P(alb,e)P(jla)P(m|a)
|

Function of b,j,m

Example of VE: P(J)

jo
= JMABE ;E)'\
P(AB,E) P @ @

BE)
JIAP(MIA)
uP(MIA) ZgP(B) Ze (AIB E) ()
(MIA) gP(B) f1(A,B)
(
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Other Inference Algorithms
Direct Sampling:
= Repeat N times:

= Use random number generator to generate sample values for
each node

= Start with nodes with no parents
= Condition on sampled parent values for other nodes

= Count frequencies of samples to get an approximation to desired
distribution

Other variants: Rejection sampling, likelihood weighting, Gibbs
sampling and other MCMC methods (see text)

Belief Propagation: A “message passing” algorithm for
approximating P(X|evidence) for each node variable X

Variational Methods: Approximate inference using
distributions that are more tractable than original ones

(see text for details)

Pac-Man goes Ghost Hunting

(if true distance = 8)

15

Pac-Man L J 13 \I
does not Gets noisy e
know true measurements of 9 ==
position of Manhattan -
the ghost distance to ghost =
51
1
|

Must infer probability distribution over
true ghost position

Noisy distance prob

10
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Example of Ghost Tracking (movie)

11

Bayesian Network for Tracking

Ghost
True ghost

position @ @ @ L True ghost positions
attime 1, 2,...,N

Noisy distance
measurements
attime 1, 2,...,N

Noisy
distance
measurement

This “Dynamic” Bayesian network is also called a

Hidden Markov Model (HMM)

* Dynamic = time-dependent

* Hidden = state (ghost position) is hidden

« Markov = current state only depends on previous state
Similar to MDP (Markov decision process) but no actions
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Hidden Markov Model (HMM)

Hidden State at
timet=1,2,...,N

Emissions
(measurements) at
timet=1,2,...,N

HMM is defined by 2 conditional probabilities:
P(Xt | Xt_l) Transition model = P(X'| X)
P(E,| X,)  Emissionmodel =P(E|X)

(aka measurement/observation model)

plus initial state distribution P(X,)

13

Project 4: Ghostbusters

» Plot: Pacman's grandfather, Grandpac, learned
to hunt ghosts for sport.

» Blinded by his power, but can hear the ghosts’
banging and clanging sounds.

» Transition Model: Ghosts move randomly, but
are sometimes biased.

= Emission Model: Pacman gets a “noisy”
distance to each ghost.
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Ghostbusters HMM

= P(X,) = uniform P(X)

= P(X'|X) = ghost usually moves clockwise,

but sometimes moves in a random direction

or stays in place

16 1,112

P(X|X=<1,2>) [ICHECCEY

= P(E|X) = compute Manhattan distance to
ghost from Pac-Man and emit a noisy
distance given this true distance (see
example for true distance = 8)

aouelsIp AsION

1/9 1/9

1/9 1/9

1/9 1/9

= = =
w w ~ © = w v
_"'III"'_

-

HMM Inference Problem

6666 &

Where is the ghost
now?

Compute posterior
probability over X,

= Given evidence (all measurements made so far)

E ., =e,

= Main inference problem:

» Filtering: Find posterior P(X|e;.,) for current ¢
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The “Forward” Algorithm for Filtering

= Want to compute the “belief’ Bi(X) = P(X¢le1:t)

= Derive belief update rule from probability definitions, Bayes’
rule and Markov assumption:

P(X,le,....e) =a P(e | X,,&,...,6.,) P(X,|e,..., ) Bayes

Markov +
=a P(g | X,) Z P(Xe, Xia 1€y €.1) Marginalize
X1
=aP(e | X)) D P(X I X188 )P(X |06 y)
X1
=aP(e | X)) D P(X I X )P(X 4 lep....e)
/ X1
New Normali-  Emission Transition Previous
estimate  zation model model estimate

constant

Example of Filtering (Tracking)
using the Forward Algorithm (movie)
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Particle Filtering Motivation

= Sometimes |X| is too big for exact inference
= |X| may be too big to even store B,(X)

E.g. when X is continuous 0.0 | 0.0 | 0.2

= |X|2 may be too big to do updates

00 [ 0.1 | 0.0

00 | 02 | 05

= Solution: Approximate inference

= Track a set of samples of X '
= Samples are called particles e
= Number of samples for X=x is oo
proportional to probability of x
10
o0 | ¢%

Next Time

= Particle Filtering and its Applications
» Guest lecture by Prof. Dieter Fox
= To Do:

= Project 4 (last project! Assigned today)

20
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