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CSE 473 
 

Lecture 21 
(Chapter 14) 

 

Bayesian Networks 

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore 

(Courtesy Mike West) 

Joint Probability 
 

Marginal Probability 
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Summing out a variable is called marginalization 

 
Conditional Probability 

Total 

number of 

events = N 
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Recall: Bayes’ Rule 
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Normalization in Bayes’ Rule 
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



 is called the normalization constant 
(can be calculated by summing over numerator values) 
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Why is Bayes rule useful? 

Allows diagnostic reasoning from causal information: 

Example 1: State Estimation 

 Suppose a robot obtains measurement z 

 What is P(doorOpen|z)? 
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Causal vs. Diagnostic Reasoning 

 P(open|z) is diagnostic. 

 P(z|open) is causal. 

 Often causal knowledge is easier to 

obtain. 

 Bayes rule allows us to use causal 

knowledge to diagnose a situation: 
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count frequencies! 

State Estimation Example 

 Suppose: P(z|open) = 0.6 P(z|open) = 0.3 

 P(open) = P(open) = 0.5 
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Measurement z raises the probability that 
the door is open from 0.5 to 0.67 
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Is there a general representation 
scheme for efficient probabilistic 
inference? 

Yes! 

10 

Enter…Bayesian networks 
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What are Bayesian networks? 

 Simple, graphical notation for conditional 

independence assertions 
 Allows compact specification of full joint 

distributions 
 

Example: Back at the Dentist’s 

 Topology of network encodes conditional 

independence assertions: 

 

 

 

 

 

 Weather is independent of the other variables 

 Toothache and Catch are conditionally 

independent of each other given Cavity 
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Conditional Independence and the “Naïve Bayes Model” 

Bayesian networks 
 

 Syntax: 
 set of nodes, one per random variable 

 directed, acyclic graph (link ≈ "directly 
influences") 

 conditional distribution for each node 
given its parents: 

    P (Xi | Parents (Xi)) 

 

 For discrete variables, conditional 

distribution = conditional probability 

table (CPT) = distribution over Xi for 

each combination of parent values 
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Example 2: Burglars and Earthquakes 

 You are at a “Done with the AI class” party. 

 Neighbor John calls to say your home alarm has gone off 

(but neighbor Mary doesn't).  

 Sometimes your alarm is set off by minor earthquakes. 

 Question: Is your home being burglarized? 

Example 2: Burglars and Earthquakes 

 Variables: Burglary, Earthquake, 

Alarm, JohnCalls, MaryCalls 
 

 Network topology reflects "causal" 

knowledge: 

 A burglar can set the alarm off 

 An earthquake can set the alarm 

off 

 The alarm can cause Mary to call 

 The alarm can cause John to call 
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Bayesian Network for Burglars and Earthquakes 

Compact Representation of Probabilities in 

Bayesian Networks 

 A CPT for Boolean Xi with k Boolean parents has 2k rows 

for the combinations of parent values 

 

 Each row requires one number p for Xi = true 

(the other number for Xi = false is just 1-p) 

 

 If each variable has no more than k parents, an n-variable 

network requires O(n · 2k) numbers 

 This grows linearly with n vs. O(2n) for full joint 

distribution 
 

 For burglar network, 1+1+4+2+2 = 10 numbers  

    (vs. 25-1 = 31 numbers) for full joint distribution 

Xi 

k parents  
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Bayesian Network Semantics 

 Full joint distribution is defined as product of local 

conditional distributions: 

  P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

 

 

 

 e.g., Joint probability of all variables being true = ?  

          P(j  m  a  b  e) 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 
 

 Similarly, P(j  m  a  b  e) 

 = P (j | a) P (m | a) P (a | b, e) P (b) P (e) 

 

n 

20 

Probabilistic Inference in BNs 

The graphical independence representation yields efficient 

inference schemes 

We generally want to compute  

 P(X|E) where E is evidence from sensory measurements 

etc. (known values for variables) 

 Sometimes, may want to compute just P(X) 

One simple inference algorithm:  

 variable elimination (VE) 
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Compute P(B=true | J=true, M=true) 

P(b|j,m) =  P(b,j,m) =  e,a P(b,j,m,e,a) 

What is the probability of burglary given that 

John and Mary called? 

22 

Computing P(B=true | J=true, M=true) 

P(b|j,m) =  e,a P(b,j,m,e,a)  

  =  e,a P(b) P(e) P(a|b,e) P(j|a) P(m|a)  

  =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 
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23 Repeated computations  use dynamic programming 

P(b|j,m) =  P(b) e P(e) a P(a|b,e)P(j|a)P(m|a) 

Structure of Computation 

24 

Next Time 

 Inference Algorithms 

 Variable Elimination (VE) 

 Hidden Markov Models 

 To Do:  

 Project 3 due Sunday before midnight 

  Bayes 
rules! 


