CSE 473

Lecture 21
(Chapter 14)

Bayesian Networks

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT..
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APRIORIUS PRAGHATICUS FREQUEHTISTUS SAPIENS BAYESIAHIS

(Courtesy Mike West)

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Joint Probability Total

ni Yy Nij number of
pX =z,Y =y;) = N events = N
Marginal Probability e

P(X =X) :ZP(Xi7yj) =

P(Y = yj) :ZP(Xiv yi) :

Summing out a variable is called marginalization

T

Conditional Probability
p(Y =y | X =) = r;i yj nij
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Recall: Bayes’ Rule
P(x,y)=P(x|y)P(y)=P(y|x)P(x)
.e.
()~ P P00

Normalization in Bayes’ Rule

PWMO=HyQyw”=aPWDOHM
1 1 1

TRy TPy S PIINPE

o is called the normalization constant
(can be calculated by summing over numerator values)
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Why is Bayes rule useful?

Allows diagnostic reasoning from causal information:

P(Ef fect|Cause) P(Cause)

P(Cause|Ef fect) = P(Ef fect)

Example 1. State Estimation

= Suppose a robot obtains measurement z
= What is P(doorOpen|z)?

e
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Causal vs. Diagnhostic Reasoning

P(open|z) is diagnostic.
P(z|open) is causal.
Often causal knowledge is easier to

obtain. count frequencies!
Bayes rule allows us to use causal

knowledge to diagnose a situation:
P(z|open)P(open)
P(2)

P(open|z) =

State Estimation Example

» Suppose: P(zlopen) =0.6  P(z]—open) =0.3
= P(open) = P(—open) = 0.5

P(z |open)P(open)

P(open|z) =
(open|2) P(z |open) p(open) + P(z | —open) p(—open)

06-05 _ 0.30
0.6-0.5+0.3-0.5 0.45

P(open|z) = =0.67

Measurement z raises the probability that
the door is open from 0.5 to 0.67
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Is there a general representation
scheme for efficient probabilistic
inference?

Enter...Bayesian networks

10
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What are Bayesian networks?

= Simple, graphical notation for conditional

independence assertions

= Allows compact specification of full joint
distributions

Example: Back at the Dentist’'s

= Topology of network encodes conditional
independence assertions:

CEDNCD

» Weather is independent of the other variables

= Toothache and Catch are conditionally
independent of each other given Cavity
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Conditional Independence and the “Naive Bayes Model’

P(Cavity|toothache A catch)
= a P(toothache N catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty,...,Effect,) = P(Cause)ILLP(Ef fect;|Cause)
; ! F Y N

Total number of parameters is /inearin n.

Bayesian networks
= Syntax: (Sau)

= set of nodes, one per random variable

= directed, acyclic graph (link = "directly (Cateh)
influences")

= conditional distribution for each node
given its parents:

P (X;| Parents (X))

= For discrete variables, conditional
distribution = conditional probability
table (CPT) = distribution over X; for
each combination of parent values




Example 2: Burglars and Earthquakes

You are at a “Done with the Al class” party.

Neighbor John calls to say your home alarm has gone off
(but neighbor Mary doesn't).

Sometimes your alarm is set off by minor earthquakes.
= Question: Is your home being burglarized?

Example 2: Burglars and Earthquakes

= Variables: Burglary, Earthquake,
Alarm, JohnCalls, MaryCalls

» Network topology reflects "causal”
knowledge:

= A burglar can set the alarm off

= An earthquake can set the alarm
off

= The alarm can cause Mary to call

= The alarm can cause John to call

Earthquake
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Bayesian Network for Burglars and Earthquakes

Burglary

P(B)

001 Earthquake
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Compact Representation of Probabilities in
Bayesian Networks

A CPT for Boolean X; with k Boolean parents has 2 rows

for the combinations of parent values k parents

Each row requires one number p for X; = true
(the other number for X; = false is just 1-p) X

If each variable has no more than k parents, an n-variable
network requires O(n - 2X) numbers

= This grows linearly with n vs. O(2") for full joint

distribution
®
For burglar network, 1+1+4+2+2 = 10 numbers m
(vs. 25-1 = 31 numbers) for full joint distribution g ™
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Bayesian Network Semantics

= Full joint distribution is defined as product of local
conditional distributions:

P (Xy, ...,X,)=m, P (X| Parents(X,)

®
@E\@

» e.g., Joint probability of all variables being true = ?
PGaAmaanbae)
=P(layP(m|a)P(a|b,e)P (b)P (e)

= Similarly, PG Am na A —b A —e)
=P(layP(m]a)P (a| —b, —€) P (-b) P (-€)

Probabilistic Inference in BNs

= The graphical independence representation yields efficient
inference schemes

=\We generally want to compute

» P(X|E) where E is evidence from sensory measurements
etc. (known values for variables)

= Sometimes, may want to compute just P(X)
= One simple inference algorithm:

= variable elimination (VE)

20
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What is the probability of burglary given that
John and Mary called?

Compute P(B=true | J=true, M=true)

©
@'m®

P(bljm)=aP(b,jm)=aZ,,P(b.jme,a)

21

Computing P(B=true | J=true, M=true)

©
@'}EL@

P(bljm)=aZ,,P(b.jm.e.a)
= a %, , P(b) P(e) P(alb.e) P(jla) P(m]|a)

= o P(b) =, P(e) =, P(a|b,e)P(jla)P(m|a)

22
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Structure of Computation

.06

P(ﬂ —m!J
.05

P(ﬂ —m!J
.05

P(ml —m!J
.01

Pimlu)
.70

P(ml = Lt}
01

: P(mla)
£ 70

P(blj,m) = o P(b) =, P(e) =, P(alb,e)P(jla)P(m|a)

Repeated computations = use dynamic programming

P(—ulbe)

23

Next Time

= Inference Algorithms
» Variable Elimination (VE)

= Hidden Markov Models

= To Do:
= Project 3 due Sunday before midnight

24
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