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CSE 473 
 

Lecture 16 
 

Markov Decision Processes (MDPs) 

Part II 

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore 

Last Time: High-Low as an MDP 
 States:  

• 2, 3, 4, done 
 Actions:  

• High, Low 
 Model: T(s, a, s’): 

• P(s’=4 | 4, Low) = 1/4   
• P(s’=3 | 4, Low) = 1/4 
• P(s’=2 | 4, Low) = 1/2 
• P(s’=done | 4, Low) = 0 
• P(s’=4 | 4, High) = 1/4  
• P(s’=3 | 4, High) = 0 
• P(s’=2 | 4, High) = 0 
• P(s’=done | 4, High) = 3/4 
• … 
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• Rewards: R(s, a, s’): 
• Number shown on s’ if  

s’< s  a=“Low” etc. 
• 0 otherwise 

• Start: 3 

Twice as 
many 2’s 
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Search Tree: High-Low 

Low High 

High Low   High Low 

, Low , High 

T = 0.5, 

R = 2 

T = 0.25, 

R = 0 

T = 0, 

R = 0 

T = 0.25, 

R = 0 

done 

MDP Search Trees 

 Each MDP state gives an expectimax-like search tree 

a 

s 

s’ 

s, a 

(s,a,s’) is called a 

transition 

T(s,a,s’) = P(s’|s,a) 

Reward = R(s,a,s’) 

s,a,s’ 

s is a 

state 

(s, a) is a 

“Q-state” 
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Utilities of Reward Sequences 

 What is an “optimal” policy? 

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0) 

• Need to define utility of a sequence of rewards 

 Idea 1: 
 Additive utility: 

 

 

Defining Utilities 

 Problem: Infinite state sequences have  

      infinite total reward 

 Solutions: 

• Impose a Finite Horizon (deadline): 

• Terminate episodes after a fixed T steps (e.g. life) 

• Gives nonstationary policies ( depends on time left) 

• Absorbing state: guarantee that a terminal state will 
eventually be reached (like “done” for High-Low) 

• Discounting: Make infinite sum finite using   (0 <  < 1)  

3 
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Discounting Rewards 

 Typically discount 
rewards by  < 1 each 
time step 

• Sooner rewards have 
higher utility than 
later rewards 

• Also helps the 
algorithms converge 

1 

 

2 

Optimal Utilities and Policy 

 Define the value of a state s: 
V*(s) = expected utility starting in s and acting optimally 

 Define the value of a Q-state (s,a): 
Q*(s,a) = expected utility starting in s, taking action a and 

thereafter acting optimally 
 Define the optimal policy: 

*(s) = optimal action from state s 

Values Optimal Policy 
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Bellman Equation 
 Simple one-step look-ahead recursive 

relationship between optimal utility values 

 Start with: 

 

 

 
 

 Combine to get Bellman Equation: 

Richard Bellman 
(1920-1984) 

a 

s 

s, a 

s,a,s’ 

s’ 

T 

Q* 

V* 

V* 

recursive 

Why not use Expectimax? 

 Problems: 
• The tree is usually infinite  
• Same states appear over and over  
• Need to search once for each state 

 Idea: Value iteration 
• Compute optimal values for all states 

all at once iteratively (using successive 
approximations) 

• Bottom-up dynamic programming 
• Simple table look-up for any state 
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Value Iteration Idea 

 Why should this work? 
 If discounting, distant rewards become 

negligible 
 If terminal states reachable from 

everywhere, fraction of episodes not 
ending becomes negligible 

 Otherwise, can get infinite expected utility 
and this approach actually won’t work 

 Calculate estimates Vk
*(s) 

• The optimal value considering only next k time steps 
(next k rewards) 

• As k , Vk approaches the optimal value 

Value Iteration 
 Idea: 

• Start with V0
*(s) = 0, which we know is right (why?) 

• Given Vi
*, calculate the values for all states for depth i+1: 

• This is called a value update or Bellman update 
• Repeat until convergence 

 Theorem: will converge to unique optimal values 
 Basic idea: approximations get refined towards optimal values 
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Example: Bellman Updates 
Example: =0.9, noise=0.2, 

living penalty=0 

? 

? 

? ? ? ? 

? 

? ? 

= 0.72 

Example: Value Iteration 

 Information propagates outward from terminal 
states and eventually all states have correct value 
estimates 

V1 V2 
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Example: Value Iteration (Movie) 

Next Time 

 Finding the optimal policy 

 Reinforcement Learning 

 To Do 

• Read chapters 17 and 21 

17 


