
11/2/2012

1

CSE 473

Lecture 16

Markov Decision Processes (MDPs)

Part II

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Last Time: High-Low as an MDP
 States:

• 2, 3, 4, done
 Actions:

• High, Low
 Model: T(s, a, s’):

• P(s’=4 | 4, Low) = 1/4
• P(s’=3 | 4, Low) = 1/4
• P(s’=2 | 4, Low) = 1/2
• P(s’=done | 4, Low) = 0
• P(s’=4 | 4, High) = 1/4
• P(s’=3 | 4, High) = 0
• P(s’=2 | 4, High) = 0
• P(s’=done | 4, High) = 3/4
• …

3

• Rewards: R(s, a, s’):
• Number shown on s’ if

s’< s  a=“Low” etc.
• 0 otherwise

• Start: 3

Twice as
many 2’s

11/2/2012

2

Search Tree: High-Low

Low High

High Low High Low

, Low , High

T = 0.5,

R = 2

T = 0.25,

R = 0

T = 0,

R = 0

T = 0.25,

R = 0

done

MDP Search Trees

 Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) is called a

transition

T(s,a,s’) = P(s’|s,a)

Reward = R(s,a,s’)

s,a,s’

s is a

state

(s, a) is a

“Q-state”

11/2/2012

3

Utilities of Reward Sequences

 What is an “optimal” policy?

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0)

• Need to define utility of a sequence of rewards

 Idea 1:
 Additive utility:

Defining Utilities

 Problem: Infinite state sequences have

 infinite total reward

 Solutions:

• Impose a Finite Horizon (deadline):

• Terminate episodes after a fixed T steps (e.g. life)

• Gives nonstationary policies ( depends on time left)

• Absorbing state: guarantee that a terminal state will
eventually be reached (like “done” for High-Low)

• Discounting: Make infinite sum finite using  (0 <  < 1)

3

11/2/2012

4

Discounting Rewards

 Typically discount
rewards by  < 1 each
time step

• Sooner rewards have
higher utility than
later rewards

• Also helps the
algorithms converge

1



2

Optimal Utilities and Policy

 Define the value of a state s:
V*(s) = expected utility starting in s and acting optimally

 Define the value of a Q-state (s,a):
Q*(s,a) = expected utility starting in s, taking action a and

thereafter acting optimally
 Define the optimal policy:

*(s) = optimal action from state s

Values Optimal Policy

11/2/2012

5

Bellman Equation
 Simple one-step look-ahead recursive

relationship between optimal utility values

 Start with:

 Combine to get Bellman Equation:

Richard Bellman
(1920-1984)

a

s

s, a

s,a,s’

s’

T

Q*

V*

V*

recursive

Why not use Expectimax?

 Problems:
• The tree is usually infinite
• Same states appear over and over
• Need to search once for each state

 Idea: Value iteration
• Compute optimal values for all states

all at once iteratively (using successive
approximations)

• Bottom-up dynamic programming
• Simple table look-up for any state

11/2/2012

6

Value Iteration Idea

 Why should this work?
 If discounting, distant rewards become

negligible
 If terminal states reachable from

everywhere, fraction of episodes not
ending becomes negligible

 Otherwise, can get infinite expected utility
and this approach actually won’t work

 Calculate estimates Vk
*(s)

• The optimal value considering only next k time steps
(next k rewards)

• As k , Vk approaches the optimal value

Value Iteration
 Idea:

• Start with V0
*(s) = 0, which we know is right (why?)

• Given Vi
*, calculate the values for all states for depth i+1:

• This is called a value update or Bellman update
• Repeat until convergence

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values

11/2/2012

7

Example: Bellman Updates
Example: =0.9, noise=0.2,

living penalty=0

?

?

? ? ? ?

?

? ?

= 0.72

Example: Value Iteration

 Information propagates outward from terminal
states and eventually all states have correct value
estimates

V1 V2

11/2/2012

8

Example: Value Iteration (Movie)

Next Time

 Finding the optimal policy

 Reinforcement Learning

 To Do

• Read chapters 17 and 21

17

