
1

CSE 473

Lecture 12

Chapter 8

First-Order Logic

© CSE AI faculty

2

What’s on our menu today?

First-Order Logic

•Definitions

•Universal and Existential
Quantifiers

•Skolemization

•Unification

2

3

Propositional vs. First-Order

Propositional logic: Deals with facts and
propositions (can be true or false):

 P1,1 “there is a pit in (1,1)”

 George_Monkey “George is a monkey”

 George_Curious “George is curious”

 473student1_Monkey

 (George_Monkey  ¬473student1_Monkey)  …

4

Propositional vs. First-Order
First-order logic: Deals with objects and
relations

Objects: George, 473Student1, Monkey2, Raj, …

Relations: Monkey(George), Curious(George),

 Smarter(473Student1, Monkey2)

 Smarter(Monkey2, Raj)

 Stooges(Larry, Moe, Curly)

 PokesInTheEyes(Moe, Curly)

 PokesInTheEyes(473Student1, Raj)

3

5

FOL Definitions
Constants: Name a specific object.
 George, Monkey2, Larry, …
Variables: Refer to an object without naming it.
 X, Y, …
Relations (predicates): Properties of or

relationships between objects.
 Curious, PokesInTheEyes, …

6

FOL Definitions
Functions: Mapping from objects to objects.
 banana-of, grade-of, binders-full-of
Terms: Logical expressions referring to objects
 banana-of(George)
 grade-of(stdnt1)
 binders-full-of(women)
 binders-full-of(men)
 binders-full-of(monkeys)

4

7

Logical connectives: and, or, not, , 

Quantifiers:
•  For all (Universal quantifier)

•  There exists (Existential quantifier)

Examples

• George is a monkey and he is curious

• All monkeys are curious

• There is a curious monkey

More Definitions

Monkey(George)  Curious(George)

m: Monkey(m)  Curious(m)

m: Monkey(m)  Curious(m)

8

Quantifier / Connective
Interaction

x: M(x)  C(x)

x: M(x) C(x)

x: M(x)  C(x)

x: M(x)  C(x)

M(x) == “x is a monkey”
C(x) == “x is curious”

“Everything is a curious monkey”

“All monkeys are curious”

“There exists a curious monkey”

“There exists an object that is either a curious
 monkey, or not a monkey at all”

5

9

Nested Quantifiers:
Order matters!

Example
Every monkey has a tail

x y P(x,y)  y x P(x,y)

m t has(m,t)

Everybody loves somebody vs. Someone is loved by everyone

t m has(m,t)

Every monkey shares a tail!

Try:

y x loves(x, y) x y loves(x, y)

10

Semantics
Semantics = what the arrangement of symbols
means in the world

Propositional logic

• Basic elements are propositional variables e.g., P1,1
 (refer to facts about the world)

• Possible worlds: mappings from variables to T/F

First-order logic

• Basic elements are terms, e.g., George, banana-
of(George), binders-full-of(banana-of(George))
 (logical expressions that refer to objects)

• Interpretations: mappings from terms to real-
world elements.

6

11

Example: A World of Kings and Legs

Syntactic elements:

Richard John

Constants: Functions: Relations:
 LeftLeg(p) On(x,y) King(p)

12

Interpretation I

Interpretations map syntactic tokens to model elements

Constants: Functions: Relations:
 Richard John LeftLeg(p) On(x,y) King(p)

7

13

Interpretation II

Constants: Functions: Relations:

Richard John LeftLeg(p) On(x,y) King(p)

14

Two constants (and 5 objects in world)

• Richard, John (R, J, crown, RL, JL)

One unary relation
King(x)

Two binary relations
Leg(x, y); On(x, y)

How Many Interpretations?

52 = 25 object mappings

Infinite number of values for x  infinite mappings
Even if we restricted x to: R, J, crown, RL, JL:
 25 = 32 unary truth mappings

Infinite. But even restricting x, y to five objects
still yields 225 mappings for each binary relation

8

15

Satisfiability, Validity, &
Entailment

S is valid if it is true in all interpretations

S is satisfiable if it is true in some interp

S is unsatisfiable if it is false in all interps

S1 ╞ S2 (S1 entails S2) if

for all interps where S1 is true,

S2 is also true

16

Propositional. Logic vs. First Order

Ontology

Syntax

Semantics

Inference
 Algorithm

Complexity

Objects,
Properties,
Relations

Atomic sentences
Connectives

Variables & quantification
Sentences have structure: terms
father-of(mother-of(X)))

Unification
Forward, Backward chaining
Prolog, theorem proving

DPLL, WalkSAT
Fast in practice

Semi-decidable
May run forever if KB ╞ 

NP-Complete

Facts (P, Q,…)

Interpretations
(Much more complicated) Truth Tables

9

17

First-Order Wumpus World

 Objects

• Squares, wumpuses, agents,

• gold, pits, stinkiness, breezes

 Relations

• Square topology (adjacency),

• Pits/breezes,

• Wumpus/stinkiness

18

Wumpus World: Squares

Better: Squares as lists:
 [1, 1], [1,2], …, [4, 4]

Square topology relations:
 x, y, a, b: Adjacent([x, y], [a, b]) 

 [a, b]  {[x+1, y], [x-1, y], [x, y+1], [x, y-1]}

• Each square as an object:
 Square1,1, Square1,2, …,
 Square3,4, Square4,4

•Square topology relations?
 Adjacent(Square1,1, Square2,1)

…
Adjacent(Square3,4, Square4,4)

10

19

Wumpus World: Pits

List only the pits we have?
 Pit3,1, Pit3,3, Pit4,4

Problem?
 No reason to distinguish pits (same properties)

Better: pit as unary predicate
 Pit(x)

 Pit([3,1]), Pit([3,3]), Pit([4,4]) will be true

•Each pit as an object:
 Pit1,1, Pit1,2, …,
 Pit3,4, Pit4,4

• Problem?
Not all squares have pits

20

Wumpus World: Breezes

“Squares next to pits are breezy”:

 c, d, a, b:

 Pit([c, d])  Adjacent([c, d], [a, b])  Breezy([a, b])

• Represent breezes like pits, as unary predicates:
Breezy(x)

11

21

Wumpus World: Wumpuses

Better: Wumpus’s home as a function:

Home(Wumpus) references the wumpus’s home square.

• Wumpus as object:
Wumpus

• Wumpus home as unary predicate:
WumpusIn(x)

22

FOL Reasoning: Outline

Basics of FOL reasoning

Classes of FOL reasoning methods

• Forward & Backward Chaining

• Resolution

• Compilation to SAT

12

23

Universally quantified sentence:

• x: Monkey(x)  Curious(x)

Intutively, x can be anything:

• Monkey(George)  Curious(George)

• Monkey(473Student1)  Curious(473Student1)

• Monkey(DadOf(George))  Curious(DadOf(George))

Formally: Example:

 x S x Monkey(x)  Curious(x)

Subst({x/p}, S) Monkey(George)  Curious(George)

Basics: Universal Instantiation

x is replaced with p in S,
and the quantifier removed

x is replaced with George in S,
and the quantifier removed

24

Existentially quantified sentence:

x: Monkey(x)  ¬Curious(x)

Intutively, x must name something. But what?

Can we conclude:

Monkey(George)  ¬Curious(George) ???

No! S might not be true for George!

Use a Skolem Constant and draw the conclusion:
Monkey(K)  ¬Curious(K)

where K is a completely new symbol (stands for the monkey
for which the statement is true)

Formally:

x S

Subst({x/K}, S)

Basics: Existential Instantiation

K is called a Skolem constant

13

25

Basics: Generalized Skolemization
What if our existential variable is nested?

x y: Monkey(x)  HasTail(x, y)

Can we conclude:

x: Monkey(x)  HasTail(x, K_Tail) ???

Nested existential variables can be replaced by
Skolem functions

• Args to function are all surrounding  vars

 x: Monkey(x)  HasTail(x, f(x))

“tail-of” function

26

What if we want to use modus ponens?

Propositional Logic:

a  b, a  b  c

 c

In First-Order Logic?

 x Monkey(x)  Curious(x)

Monkey(George)

????

Must “unify” x with George:
Need to substitute {x/George} in Monkey(x)  Curious(x) to

infer Curious(George)

Motivation for Unification

14

27

What is Unification?

Not this kind of unification…

28

What is Unification?
Match up expressions by finding variable

 values that make the expressions identical

Unify(x, y) returns most general unifier (MGU).

 MGU places fewest restrictions on values of variables

Examples:

• Unify(city(x), city(seattle)) returns {x/seattle}

• Unify(PokesInTheEyes(Moe,x), PokesInTheEyes(y,z))

 returns {y/Moe,z/x}

– {y/Moe,x/Moe,z/Moe} possible but not MGU

15

29

Unification and Substitution

Unification produces a mapping from variables to
values (e.g., {x/seattle,y/tacoma})

Substitution: Subst(mapping,sentence) returns new
sentence with variables replaced by values

• Subst({x/seattle,y/tacoma}),connected(x, y)),

 returns connected(seattle, tacoma)

30

Next Time

Reasoning with FOL

 Chaining

 Resolution

 Compilation to SAT

To Do:

 Project #2

 Read Chapters 8-9

