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What’s on our menu today? 

First-Order Logic 

•Definitions 

•Universal and Existential 
Quantifiers 

•Skolemization 

•Unification 
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Propositional vs. First-Order 

Propositional logic: Deals with facts and 
propositions (can be true or false):  

 P1,1 “there is a pit in (1,1)” 

  George_Monkey “George is a monkey” 

  George_Curious “George is curious” 

  473student1_Monkey  

  (George_Monkey  ¬473student1_Monkey)  …  
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Propositional vs. First-Order 
First-order logic: Deals with objects and 
relations 

Objects: George, 473Student1, Monkey2, Raj, … 

Relations: Monkey(George), Curious(George),  

       Smarter(473Student1, Monkey2) 

  Smarter(Monkey2, Raj) 

  Stooges(Larry, Moe, Curly) 

  PokesInTheEyes(Moe, Curly) 

  PokesInTheEyes(473Student1, Raj) 
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FOL Definitions 
Constants: Name a specific object.  
  George,  Monkey2, Larry, … 
Variables: Refer to an object without naming it. 
  X, Y, … 
Relations (predicates): Properties of or 

relationships between objects. 
  Curious, PokesInTheEyes, … 
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FOL Definitions 
Functions: Mapping from objects to objects. 
 banana-of, grade-of, binders-full-of 
Terms: Logical expressions referring to objects  
 banana-of(George) 
 grade-of(stdnt1) 
  binders-full-of(women) 
  binders-full-of(men) 
  binders-full-of(monkeys) 
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Logical connectives:  and, or, not, ,  

Quantifiers:   
•    For all   (Universal quantifier) 

•    There exists    (Existential quantifier) 

Examples 

• George is a monkey and he is curious 
  

• All monkeys are curious 

 

• There is a curious monkey 

More Definitions 

Monkey(George)  Curious(George) 

m: Monkey(m)  Curious(m) 

m: Monkey(m)  Curious(m) 
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Quantifier / Connective  
Interaction 

x:  M(x)  C(x) 

 

x:  M(x) C(x) 

 

x:  M(x)  C(x) 

 

x:  M(x)  C(x) 

 

 

M(x) == “x is a monkey” 
C(x) == “x is curious” 
 

“Everything is a curious monkey” 

“All monkeys are curious” 

“There exists a curious monkey” 

“There exists an object that is either a curious 
 monkey, or not a monkey at all” 
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Nested Quantifiers:  
Order matters! 

Example 
Every monkey has a tail 

x y  P(x,y)    y x P(x,y)  

m t  has(m,t) 

Everybody loves somebody vs.  Someone is loved by everyone 

t m  has(m,t) 

Every monkey shares a tail! 

Try: 

y x  loves(x, y) x y  loves(x, y) 
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Semantics 
Semantics = what the arrangement of symbols 
means in the world 

Propositional logic 

• Basic elements are propositional variables e.g., P1,1 
 (refer to facts about the world) 

• Possible worlds: mappings from variables to T/F 

First-order logic 

• Basic elements are terms, e.g., George, banana-
of(George), binders-full-of(banana-of(George)) 
  (logical expressions that refer to objects) 

• Interpretations: mappings from terms to real-                            
world elements.  



6 

11 

Example: A World of Kings and Legs 

Syntactic elements: 

Richard  John 

Constants:           Functions:          Relations: 
  LeftLeg(p) On(x,y)  King(p) 
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Interpretation I 
 

Interpretations map syntactic tokens to model elements  

Constants:          Functions:           Relations: 
 Richard  John LeftLeg(p) On(x,y)  King(p) 
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Interpretation II 
 

Constants:       Functions:           Relations: 
 

Richard  John LeftLeg(p) On(x,y)  King(p) 
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Two constants (and 5 objects in world) 

• Richard, John  (R, J, crown, RL, JL) 

 

One unary relation 
King(x) 

 

 

Two binary relations 
Leg(x, y); On(x, y) 

How Many Interpretations? 

52 = 25 object mappings 

Infinite number of values for x  infinite mappings 
Even if we restricted x to: R, J, crown, RL, JL: 
 25 = 32 unary truth mappings 

Infinite.  But even restricting x, y to five objects 
still yields 225 mappings for each binary relation 
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Satisfiability, Validity, & 
Entailment 

S is valid if it is true in all interpretations 

 

S is satisfiable if it is true in some interp 

 

S is unsatisfiable if it is false in all interps 

 

S1 ╞ S2 (S1 entails S2) if  

for all interps where S1 is true,  

S2 is also true 
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Propositional. Logic vs.  First Order 

Ontology 
 
 
Syntax 
 
 
Semantics 
 
 
Inference 
   Algorithm 
 
 

Complexity 

Objects,  
Properties,  
Relations 

Atomic sentences 
Connectives 

Variables & quantification 
Sentences have structure: terms 
father-of(mother-of(X))) 

Unification 
Forward, Backward chaining  
Prolog, theorem proving 

DPLL, WalkSAT 
Fast in practice 

Semi-decidable 
May run forever if KB ╞   

NP-Complete 

Facts (P, Q,…) 

Interpretations  
(Much more complicated) Truth Tables 
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First-Order Wumpus World 

  Objects 

• Squares, wumpuses, agents, 

• gold, pits, stinkiness, breezes 

  Relations 

• Square topology (adjacency), 

• Pits/breezes, 

• Wumpus/stinkiness 
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Wumpus World: Squares 

Better: Squares as lists: 
 [1, 1], [1,2], …, [4, 4] 

Square topology relations: 
 x, y, a, b: Adjacent([x, y], [a, b])  

  [a, b]  {[x+1, y], [x-1, y], [x, y+1], [x, y-1]} 

• Each square as an object: 
 Square1,1, Square1,2, …,  
 Square3,4, Square4,4 

•Square topology relations? 
  Adjacent(Square1,1, Square2,1) 

… 
Adjacent(Square3,4, Square4,4) 
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Wumpus World: Pits 

List only the pits we have? 
     Pit3,1, Pit3,3, Pit4,4 

Problem? 
     No reason to distinguish pits (same properties) 

Better: pit as unary predicate 
     Pit(x) 

     Pit([3,1]), Pit([3,3]), Pit([4,4]) will be true 

•Each pit as an object: 
 Pit1,1, Pit1,2, …,  
 Pit3,4, Pit4,4 

• Problem? 
Not all squares have pits 
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Wumpus World: Breezes 

“Squares next to pits are breezy”: 

  c, d, a, b:  

  Pit([c, d])  Adjacent([c, d], [a, b])  Breezy([a, b]) 
     

• Represent breezes like pits, as unary predicates: 
Breezy(x) 
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Wumpus World: Wumpuses 

Better: Wumpus’s home as a function: 

Home(Wumpus) references the wumpus’s home square. 
  

• Wumpus as object: 
Wumpus 

• Wumpus home as unary predicate: 
WumpusIn(x) 
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FOL Reasoning: Outline 

Basics of FOL reasoning 

Classes of FOL reasoning methods 

• Forward & Backward Chaining  

• Resolution 

• Compilation to SAT 
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Universally quantified sentence: 

• x: Monkey(x)  Curious(x) 

Intutively, x can be anything: 

• Monkey(George)  Curious(George) 

• Monkey(473Student1)  Curious(473Student1) 

• Monkey(DadOf(George))  Curious(DadOf(George)) 
 

Formally:        Example: 

   x  S         x  Monkey(x)  Curious(x)  

Subst({x/p}, S)  Monkey(George)  Curious(George) 

Basics: Universal Instantiation 

x is replaced with p in S,  
and the quantifier removed 

x is replaced with George in S,  
and the quantifier removed 
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Existentially quantified sentence: 

x: Monkey(x)  ¬Curious(x) 

Intutively, x must name something.  But what? 

Can we conclude: 

Monkey(George)  ¬Curious(George)  ??? 

No!  S might not be true for George! 
 

Use a Skolem Constant and draw the conclusion: 
Monkey(K)  ¬Curious(K) 

where K is a completely new symbol (stands for the monkey 
for which the statement is true) 

 

Formally:     

x  S      

Subst({x/K}, S)  

Basics: Existential Instantiation 

K is called a Skolem constant 
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Basics: Generalized Skolemization 
What if our existential variable is nested? 

x y: Monkey(x)  HasTail(x, y) 

Can we conclude: 

x: Monkey(x)  HasTail(x, K_Tail) ??? 

 

Nested existential variables can be replaced by 
Skolem functions  

• Args to function are all surrounding  vars 
 

 x: Monkey(x)  HasTail(x, f(x)) 

 

“tail-of” function 
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What if we want to use modus ponens? 

Propositional Logic: 

a  b,     a  b  c 

         c 
 

In First-Order Logic? 

     x Monkey(x)  Curious(x) 

Monkey(George) 

???? 

Must “unify” x with George:  
Need to substitute {x/George} in Monkey(x)  Curious(x) to 

infer Curious(George) 

 

Motivation for Unification 
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What is Unification? 

Not this kind of unification… 
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What is Unification? 
Match up expressions by finding variable 

 values that make the expressions identical 

Unify(x, y) returns most general unifier (MGU).  

  MGU places fewest restrictions on values of variables  

 

Examples: 

• Unify(city(x), city(seattle)) returns  {x/seattle} 

• Unify(PokesInTheEyes(Moe,x), PokesInTheEyes(y,z))  

 returns {y/Moe,z/x}  

– {y/Moe,x/Moe,z/Moe} possible but not MGU 
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Unification and Substitution 

Unification produces a mapping from variables to 
values (e.g., {x/seattle,y/tacoma}) 

Substitution: Subst(mapping,sentence) returns new 
sentence with variables replaced by values 

• Subst({x/seattle,y/tacoma}),connected(x, y)),  

  returns connected(seattle, tacoma) 
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Next Time 

Reasoning with FOL 

 Chaining      

 Resolution  

 Compilation to SAT 

 

To Do: 

 Project #2 

 Read Chapters 8-9 


