
1

CSE 473

Lecture 11
Chapter 7

Inference in Propositional Logic

© CSE AI faculty

2

Recall: Propositional Logic Terminology

Terminology:

Literal = proposition symbol or its negation
 E.g., A, A, B, B, etc. (positive vs. negative)

Clause = disjunction of literals
 E.g., (B  C  D)

Conjunctive Normal Form (CNF):
 sentence = conjunction of clauses
 E.g., (A  B)  (B  C  D)

Can think of KB as a conjunction of clauses, i.e.

one long sentence

2

3

Recall: Satisfiability

• A sentence is satisfiable if it is true in some
model
e.g., A  B, C

• A sentence is unsatisfiable if it is true in no
models
e.g., A  A

• Satisfiability is connected to inference via
the following:

 KB ╞ α if and only if (KB  α) is
unsatisfiable (proof by contradiction)

4

Last Time:
Propositional Inference

Two main approaches to inference:

1. Inference by Model Checking (TT enumeration)

2. Inference by Theorem Proving: Use rules of
inference to construct a proof of a sentence

3

5

Review: Inference by Theorem Proving

Use rules of inference to construct a proof of a
sentence

• Search for proof based on modus ponens,
and-elimination, logical equivalences
 One important equivalence: A  B  A  B

• Forward and backward chaining for KBs of
Horn clauses (disjunctions of literals, at most 1
positive literal)
 If A and B are true and A  B  C, then C true

• Resolution: A single complete and sound rule

Review: Resolution example

Empty clause

Recall that KB is a conjunction of all these clauses
Is P1,2  P1,2 satisfiable? No!

Therefore, KB    is unsatisfiable, i.e., KB ╞ 

You got a literal and its negation

What does this (empty clause) mean?

KB 

4

7

Review: Inference by Model Checking

Complete search algorithms
Truth table enumeration: Recursive depth-first
enumeration of assignments to all symbols (TT-entails)

 Heuristic search
DPLL algorithm (Davis, Putnam, Logemann, Loveland):

Recursive depth-first enumeration of possible models
with heuristics (such as early termination)

Incomplete local search algorithms
 WalkSAT algorithm for checking satisfiability

8

Why Satisfiability?

Can’t get
satisfaction

5

9

Why Satisfiability?

• Recall: KB ╞ α iff KB  α is unsatisfiable
• Equivalent to proving sentence α by contradiction

• Thus, algorithms for satisfiability can be

used for inference (entailment)

• However, determining if a sentence is
satisfiable or not (the SAT problem) is
NP-complete
 Finding a fast algorithm for SAT

automatically yields fast algorithms for
hundreds of difficult (NP-complete) problems

10

Satisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):

(A  B)  (A  B)  (A  B)
Satisfiable?
Yes (e.g., A = true, B = false)

(A  B)  (A  B)  (A  B)  (A  B)
Satisfiable?
No

6

11

The WalkSAT algorithm
• Local search algorithm

 Incomplete: may not always find a satisfying
assignment even if one exists

• Evaluation function?
 = Number of satisfied clauses

 WalkSAT tries to maximize this function

• Balance between greediness and randomness
 Each iteration:
 Randomly select a symbol for flipping
 Or select symbol that maximizes # satisfied clauses

12

The WalkSAT algorithm

Greed Randomness

7

13

Hard Satisfiability Problems
Consider random 3-CNF sentences. e.g.,
 (D  B  C)  (B  A  C)  (C 
B  A)  (A  D  B)  (B  D  C)

Satisfiable?
(Yes, e.g., A = B = C = true)

m = number of clauses (Here 5)
n = number of symbols (Here 4 – A, B, C, D)
m/n = 1.25 (enough symbols, usually satisfiable)

 Hard instances of SAT seem to cluster near
m/n = 4.3 (critical point)

14

Hard Satisfiability Problems

Under-
constrained

Over-
constrained

8

15

Hard Satisfiability Problems
 Median runtime for 100 satisfiable random 3-CNF

sentences, n = 50

Under-
constrained

Over-
constrained

Hard!

What about me?

9

Wumpus World

17

18

Putting it all together:
Logical Wumpus Agents

A wumpus-world agent using propositional logic:

P1,1
W1,1
For x = 1, 2, 3, 4 and y = 1, 2, 3, 4, add (with

appropriate boundary conditions):
 Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y)
 Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y)
 W1,1  W1,2  …  W4,4
 (W1,1  W1,2)
 (W1,1  W1,3)
…

 64 distinct proposition symbols, 155 sentences!

At most 1 wumpus

At least 1 wumpus

10

19

• KB contains "physics" sentences for every single
square

• For every time step t and every location [x,y], we
need to add to the KB “physics” rules such as:

 Lx,y  FacingRight t  Forward t  Lx+1,y

• Rapid proliferation of sentences…

Limitations of propositional logic

t+1 t

What we’d like is a way to talk
about objects and groups of

objects, and to define
relationships between them.

Enter: First-order logic
(aka “predicate logic”)

11

Next Time

• First-Order Logic
• To Do:

 Project #2
 Read chapter 8

21

