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CSE 473 
 

Chapter 7  
  

Inference Techniques for 
Logical Reasoning 
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Recall: Wumpus World 

Wumpus 

You 
(Agent) 



2 

Recall: Wumpus KB 

• Statements currently known 
to be true: 
P1,1 

B1,1 

B2,1 
 

• Properties of the world: E.g., 
"Pits cause breezes in 
adjacent squares" 

B1,1    (P1,2  P2,1) 

B2,1   (P1,1  P2,2  P3,1) 

(and so on for all squares) 

Knowledge Base (KB) includes the following sentences: 

Is there no pit 
in [1,2]? 

KB ╞ P1,2 ? 
 

Recall from last time: 
 
m is a model of a sentence   if  is true in m 
 
M() is the set of all models of  
 
KB ╞  (KB “entails” ) iff M(KB)  M() 
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M(KB)  M(1) 

𝟏 = P1,2 
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Inference by Truth Table Enumeration 

P1,2 

In all models in which KB is true, P1,2 is also true  
Therefore, KB ╞ P1,2 

P1,2 KB 
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Another Example 

Is there a 
pit in 
[2,2]? 
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Inference by Truth Table Enumeration 

P2,2 is false in a model in which KB is true  
Therefore, KB ╞ P2,2 

KB P2,2 
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Inference by TT Enumeration 

• Algorithm: Depth-first enumeration of all 
models (see Fig. 7.10 in text for 
pseudocode) 

• - Algorithm is sound & complete  

 

• For n symbols: 

• time complexity =O(2n), space = O(n) 
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Concepts for Other Techniques: 
Logical Equivalence 

Two sentences are logically equivalent iff they are true in the 
same models: α ≡ ß iff α╞ β and β╞ α 
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Concepts for Other Techniques: 
Validity and Satisfiability 

• A sentence is valid if it is true in all models (a 
tautology) 
e.g., True, A  A, A  A, (A  (A  B))  B 

• Validity is connected to inference via the Deduction 
Theorem: 
KB ╞ α if and only if (KB  α) is valid 

• A sentence is satisfiable if it is true in some model 
e.g., A  B, C 

• A sentence is unsatisfiable if it is true in no models 
e.g., A  A 

• Satisfiability is connected to inference via the 
following:  KB ╞ α if and only if (KB   α) is 
unsatisfiable (proof by contradiction) 
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Inference/Proof Techniques 
• Two kinds (roughly): 

 
Model checking 

• Truth table enumeration (always exponential in n) 
• Efficient backtracking algorithms,  
  e.g., Davis-Putnam-Logemann-Loveland (DPLL) 
• Local search algorithms (sound but incomplete) 
  e.g., randomized hill-climbing (WalkSAT) 

 
Successive application of inference rules 

• Generate new sentences from old in a sound way 
• Proof = a sequence of inference rule applications 
• Use inference rules as successor function in a 

 standard search algorithm 
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Inference Technique I: Resolution 

Terminology: 

Literal = proposition symbol or its negation 
 E.g., A, A, B, B, etc. 

Clause = disjunction of literals 
 E.g., (B  C  D) 

Resolution assumes sentences are in 
Conjunctive Normal Form (CNF): 
   sentence = conjunction of clauses 
 E.g., (A  B)  (B  C  D) 
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Conversion to CNF 

E.g., B1,1   (P1,2  P2,1) 
 
1. Eliminate , replacing α  β with (α  β)(β  α). 

(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1) 
 

2. Eliminate , replacing α  β with α β. 
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1) 

 

3. Move  inwards using de Morgan's rules and double-
negation: 
(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1) 

 

4. Apply distributivity law ( over ) and flatten: 
(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1) 
 
This is in CNF – Done! 
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Resolution motivation 

There is a pit in [1,3] or 
There is a pit in [2,2] There is no pit in [2,2] 

There is a pit in [1,3] 

More generally, 

l1 …  lk,    li 
l1  …  li-1  li+1  …  lk  
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Inference Technique: Resolution 

• General Resolution inference rule (for CNF): 
l1 …  lk,    m1  …  mn 

l1  …  li-1  li+1  …  lk  m1  …  mj-1  mj+1 ...  mn  

 where li and mj are complementary literals.  

  
 E.g., P1,3  P2,2,  P2,2 

         P1,3 
 
 

• Resolution is sound  
for propositional logic 
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Resolution 

Soundness of resolution inference rule  
(Recall logical equivalence A  B  A  B)  

 
(l1  …  li-1  li+1  …  lk)   li 
           mj  (m1  …  mj-1  mj+1 ...  mn) 

(li  …  li-1  li+1  …  lk)  (m1  …  mj-1  mj+1 ...  mn) 

(since li = mj) 
 

18 

Resolution algorithm 

• To show KB ╞ α, use proof by contradiction,  
 i.e., show KB  α unsatisfiable 
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Resolution example 

KB = (B1,1  (P1,2 P2,1))  B1,1 and α = P1,2 
 

Resolution: Convert to CNF and show KB   α is 
unsatisfiable 

 Given no breeze in [1,1], prove there’s no pit in [1,2] 

20 

Resolution example 

Empty clause 
(i.e., KB   α unsatisfiable) 
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Resolution example 

Empty clause 
(i.e., KB   α unsatisfiable) 
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Inference Technique II: 
Forward/Backward Chaining 

• Require sentences to be in Horn Form: 
 KB = conjunction of Horn clauses 

 Horn clause =  

• proposition symbol  or 

• “(conjunction of symbols)  symbol”  

  (i.e. clause with at most 1 positive literal) 

 E.g., KB = C  (B  A)  (C  D  B) 

• F/B chaining based on “Modus Ponens” rule:  

α1, … ,αn,  α1  …  αn  β 

β 
 Complete for Horn clauses 

• Very natural and linear time complexity in size of KB 
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Forward chaining 

• Idea: fire any rule whose premises are satisfied in KB, 
 add its conclusion to KB, until query q is found 

AND-OR Graph Query = “Is Q true?” 
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Forward chaining algorithm 

 Forward chaining is sound & complete for Horn KB 
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Forward chaining example 

Query = Q  
(i.e. “Is Q true?”) 
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Forward chaining example 
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Forward chaining example 
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Forward chaining example 
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Forward chaining example 
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Forward chaining example 
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Backward chaining 

Idea: work backwards from the query q: 
to prove q by BC, 

check if q is known already, or 
prove by BC all premises of some rule concluding q 
 

Avoid loops: check if new subgoal is already on goal stack 
 
Avoid repeated work: check if new subgoal 

1. has already been proved true, or 
2. has already failed 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Backward chaining example 
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Forward vs. backward chaining 
• FC is data-driven, automatic, unconscious processing, 

 e.g., object recognition, routine decisions 
 

• FC may do lots of work that is irrelevant to the goal  
 

• BC is goal-driven, appropriate for problem-solving, 
 e.g., How do I get an A in this class? 
 e.g., What is my best exit strategy out of the 

 classroom? 
 e.g., How can I impress my date tonight? 

 
• Complexity of BC can be much less than linear in size 

of KB 
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The DPLL algorithm 
Determine if an input propositional logic 

sentence (in CNF) is satisfiable. 
 

Improvements over truth table enumeration: 
1. Early termination 

A clause is true if any literal is true. 
A sentence is false if any clause is false. 

 
2. Pure symbol heuristic 

Pure symbol: always appears with the same "sign" in all 
clauses.  

e.g., In the three clauses (A  B), (B   C), (C  A), A 
and B are pure, C is impure.  

Make a pure symbol literal true. 
 

3. Unit clause heuristic 
Unit clause: only one literal in the clause 
The only literal in a unit clause must be true. 
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The DPLL algorithm 
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Next Time 

• WalkSAT 
• Logical Agents: Wumpus  
• First-Order Logic 
• To Do: 

 Project #2 
 Finish Chapter 7 
 Start Chapter 8 

 


