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Outline

* Probabilistic models (and inference)
= Bayesian Networks (BNs)
* |[ndependence in BNs



Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

» Hard to learn (estimate) anything empirically about more than a
few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= \We describe how variables locally interact

» | ocal interactions chain together to give global, indirect
interactions



Bayes’ Net Semantics

= Let's formalize the semantics of a
Bayes’ net s

= A set of nodes, one per variable X \ /

= Adirected, acyclic graph

= A conditional distribution for each node :%
= A collection of distributions over X, one for
each combination of parents’ values P(X|A71...4n)
P(Xla1...an)

= CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’' Net: Car




Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
» As a product of local conditional distributions

» To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

[
P(z1,22,...Zn) = H P(x;|parents(X;))
=1

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution
» The topology enforces certain independence assumptions
= Compare to the exact decomposition according to the chain rule!



Example Bayes’ Net: Insurance




= N fair, independent coin flips:

Example: Independence

P(X1) P(X>) P(Xn)
h |05 h |05 h |05
t 0.5 t | 0.5 t | 0.5
N 7
—
 P(X1,X2,... Xn)
272.<

\



Example: Coin Flips

= N independent coin flips

*= No interactions between variables:
absolute independence



Independence

= Two variables are independent if:
Va,y: Plz,y) = P(z)P(y)

» This says that their joint distribution factors into a product two

simpler distributions
= Another form:

Yaouu - Plaly)—=P{(x)

= Wewrite: X || YV

» |ndependence is a simplifying modeling assumption
» Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

/ )1 (’T. ‘*‘”r)

P> ('T. 4% )

T W P
warm | sun | 0.4
warm | rain | 0.1

cold | sun | 0.2
cold | rain | 0.3

T W P
warm | sun | 0.3
warm | rain | 0.2

cold | sun | 0.3
cold | rain | 0.2

P
T P
warm | 0.5
cold | 0.5
P(W)
W P
sun | 0.6
rain | 0.4




Conditional Independence

P(Toothache, Cavity, Catch)
If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)
The same independence holds if | don’'t have a cavity:
= P(+catch | +toothache, —cavity) = P(+catch| —cavity)
Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)
Equivalent statements:
= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
» One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Ve,y,2 . P(2,y|z) = P(z|z)P(y|z)

X Y|4
v £ P | P(.’I?|3, y) — P(:ili-'lf—':) |

= \What about this domain:
= Traffic
= Umbrella
= Raining
= \What about fire, smoke, alarm?



Ghostbusters Chain Rule

= Each depends onl
on where the ghostis P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P

= That means, the two sensors are

conditionally independent, given the

ghost position +t| +b| +g| 0.16
= T: Top square is red *t) +b] ~9| 016

B: Bottom square is red +t| -b| +g| 0.24

G: Ghost is in the top

+t| -b| -g| 0.04

= Can assume: ~t| +b| +g| 0.04

P(+g)=0.5

E( +¥ +g ) = %i -t| +b| -g| 0.24

+ - = 0.
Db | 0120 -t -b| +g| 0.06
P(+b]~g)=038 -t| -b| -g| 0.06




Example: Traffic

= Variables:
= R: It rains
= T: There is traffic

= Model 1: independence
= Model 2: rain is conditioned on traffic

= Why is an agent using model 2 better?
= Model 3: traffic is conditioned on rain

= |s this better than model 27



Example: Alarm Network

* Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
» E: Earthquake!



Example: Alarm Network
+b |0.001 @ e 10.002
' ~e |0.998
~b [0.999
@ B E A P(AB,E)
+b | +e | +a 0.95
% +b | +e | -a 0.05

+b | —e | +a 0.94

A P(J|A) +b | -e | -a | 0.06

+a [+ |0.9 - P(MIA) -b | +te | +a 0.29

+a | -] |0.1 :a m 8; -b | +e | -a 0.71

~a |+ |0.05 I ERLLU B b|-e| +a | 0.001
: -a [+m |0.01

~a|-j |0.95 T2 =m 099 -b|-e| -a | 0.999




Example: Traffic Il

» Let’s build a causal graphical model

= Variables
= T: Traffic
» R:ltrains
= L. Low pressure
= D: Roof drips
= B: Ballgame
= C: Cavity



Example: Independence

= For this graph, you can fiddle with 6 (the CPTs) all you
want, but you won’t be able to represent any distribution

iIn which the flips are dependent!

OO

P(X1) P(X2)
h (0.5 h (0.5
t (0.5 t 0.5

X 3K

All distributions



Topology Limits Distributions

Given some graph topology
G, only certain joint
distributions can be encoded

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

®
® @
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Independence in a BN

= Important question about a BN:
* Are two nodes independent given certain evidence?
» |f yes, can prove using algebra (tedious in general)
* |f no, can prove with a counter example

= Example:

» Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which
causes traffic.

= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



Causal Chains

= This configuration is a “causal chain”

X: Low pressure

@—»@—»@ Y: Rain

Z: Traffic
P(z,y,z) = P(z) P(ylz) P(zly)

» |s X independent of Z given Y?

P(z,y,z) P(x)P(y|lz)P(z|y)

P(zlz,y) = Bl w) — P(z)P(y|z)

= P(z|y) Yes!

= Evidence along the chain “blocks” the influence



Common Parent

= Another basic configuration: two
effects of the same parent @
= Are X and Z independent? / \,

= Are X and Z independent given Y? @ @

P(z,y,z) _ P(y)P(aly)P(zly) T Froectaue

P(z|x,y) =

/)(_-.1?-, ?/) P('.‘/)P(ilfl‘y) i)(lijsl\ilewsgroup
— P(g|y) Z: Lab full
Yes!

= Observing the cause blocks influence between effects.



Common Effect

= | ast configuration: two causes of

one effect (v-structures)
= Are X and Z independent? @ @
= Yes: the ballgame and the rain cause traffic, \, /
but they are not correlated @
= Still need to prove they must be (try it!)

= Are X and Z independent given Y?

= No: seeing traffic puts the rain and the
ballgame in competition as explanation? Z: Ballgame

» This is backwards from the other cases Y. Trafnc

= Observing an effect activates influence
between possible causes.

X: Raining



The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph



Reachabillity

= Recipe: shade evidence nodes

= Attempt 1: if two nodes are
connected by an undirected path

not blocked by a shaded node, @
they are conditionally independent
= Almost works, but not quite / \ /
= Where does it break? @
= Answer: the v-structure at T @

doesn’t count as a link in a path
unless “active”



Reachability (D-Separation)

= Question: Are Xand Y
conditionally independent
given evidence vars {Z}?

* Yes, if Xand Y “separated” by Z
» Look for active paths from Xto Y
= No active paths = independence!

= A path is active if each triple
IS active:

= Causal chain A— B — C where B
is unobserved (either direction)

= Common cause A <— B — C where
B is unobserved

= Common effect (aka v-structure)
A — B < C where B or one of its
descendents is observed
= All it takes to block a path is
a single inactive segment

Active Triples

~d€ §

Inactive Triples

O-@-0
Slie
S



Example: Independent?

R1 B Yes @

o \ /

R B|T’



Example: Independent?

O
LT T Yes
(&

N AV

L1 B|T’

L1 B|T,R Yes



Example

= \ariables:
» R: Raining
= T: Traffic

» D: Roof drips
= S: I’'m sad @

= Questions:
T 1 D
JER WD Yes
T 1 D|R, S




Changing Bayes’ Net Structure

= The same joint distribution can be
encoded in many different Bayes’ nets

= Analysis question: given some edges,
what other edges do you need to add?

= One answer: fully connect the graph

= Better answer: don’'t make any false
conditional independence assumptions



Example: Coins

= Extra arcs don't prevent representing
Independence, just allow non-independence

OO

P(X1) P(X5) P(X1) P(X2|X1)
h | 0.5 h | 0.5 h | 0.5 h|h|{0.5
t | 0.5 t | 0.5 t | 0.5 t|h |0.5
= Adding unneeded arcs isn't h|t |0.5
wrong, it's just inefficient t|t |0.5




Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can
be deduced from BN graph structure

= D-separation gives precise conditional
iIndependence guarantees from graph alone

= A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution



