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Outline

§ Probabilistic models (and inference)
§ Bayesian Networks (BNs)
§ Independence in BNs



Bayes’ Nets: Big Picture

§ Two problems with using full joint distribution tables as 
our probabilistic models:
§ Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
§ Hard to learn (estimate) anything empirically about more than a 

few variables at a time

§ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
§ More properly called graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, indirect 

interactions



Bayes’ Net Semantics

§ Let’s formalize the semantics of a 
Bayes’ net

§ A set of nodes, one per variable X

§ A directed, acyclic graph

§ A conditional distribution for each node
§ A collection of distributions over X, one for 

each combination of parents’ values

§ CPT: conditional probability table

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’ Net: Car



Probabilities in BNs

§ Bayes’ nets implicitly encode joint distributions
§ As a product of local conditional distributions
§ To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:

§ This lets us reconstruct any entry of the full joint
§ Not every BN can represent every joint distribution

§ The topology enforces certain independence assumptions
§ Compare to the exact decomposition according to the chain rule!



Example Bayes’ Net: Insurance



Example: Independence

§ N fair, independent coin flips:

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5



Example: Coin Flips

X1 X2 Xn

§ N independent coin flips

§ No interactions between variables: 
absolute independence



Independence
§ Two variables are independent if:

§ This says that their joint distribution factors into a product two 
simpler distributions

§ Another form:

§ We write: 

§ Independence is a simplifying modeling assumption
§ Empirical joint distributions: at best “close” to independent
§ What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

T W P
warm sun 0.4
warm rain 0.1
cold sun 0.2
cold rain 0.3

T W P
warm sun 0.3
warm rain 0.2
cold sun 0.3
cold rain 0.2

T P
warm 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Conditional Independence
§ P(Toothache, Cavity, Catch)
§ If I have a cavity, the probability that the probe catches in it doesn't 

depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

§ The same independence holds if I don’t have a cavity:
§ P(+catch | +toothache, ¬cavity) = P(+catch| ¬cavity)

§ Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence

§ Unconditional (absolute) independence very rare (why?)

§ Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

§ What about this domain:
§ Traffic
§ Umbrella
§ Raining

§ What about fire, smoke, alarm?



Ghostbusters Chain Rule

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

§ Each sensor depends only
on where the ghost is

§ That means, the two sensors are 
conditionally independent, given the 
ghost position

§ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(T,B,G) = P(G) P(T|G) P(B|G)

§ Can assume:
 P( +g ) = 0.5
 P( +t  | +g ) = 0.8

P( +t  | ¬g ) = 0.4
P( +b | +g ) = 0.4
P( +b | ¬g ) = 0.8



Example: Traffic
§ Variables:

§ R: It rains
§ T: There is traffic

§ Model 1: independence

§ Model 2: rain is conditioned on traffic

§ Why is an agent using model 2 better?

§ Model 3: traffic is conditioned on rain

§ Is this better than model 2?



Example: Alarm Network

§ Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)
+b 0.001

¬b 0.999

E P(E)
+e 0.002
¬e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99



Example: Traffic II

§ Let’s build a causal graphical model

§ Variables
§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity



Example: Independence

§ For this graph, you can fiddle with θ (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2

All distributions



Topology Limits Distributions
§ Given some graph topology 

G, only certain joint 
distributions can be encoded

§ The graph structure 
guarantees certain 
(conditional) independences

§ (There might be more 
independence)

§ Adding arcs increases the 
set of distributions, but has 
several costs

§ Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z



Independence in a BN

§ Important question about a BN:
§ Are two nodes independent given certain evidence?
§ If yes, can prove using algebra (tedious in general)
§ If no, can prove with a counter example
§ Example:

X Y Z

§ Question: are X and Z necessarily independent?
§ Answer: no.  Example: low pressure causes rain, which 

causes traffic.
§ X can influence Z, Z can influence X (via Y)
§ Addendum: they could be independent: how?



Causal Chains

§ This configuration is a “causal chain”

§ Is X independent of Z given Y?

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

§ Evidence along the chain “blocks” the influence



Common Parent

§ Another basic configuration: two 
effects of the same parent
§ Are X and Z independent?

§ Are X and Z independent given Y?
X

Y

Z

Yes!

Y: Project due

X: Newsgroup 
busy

Z: Lab full

§ Observing the cause blocks influence between effects.



Common Effect

§ Last configuration: two causes of 
one effect (v-structures)
§ Are X and Z independent?

§ Yes: the ballgame and the rain cause traffic, 
but they are not correlated

§ Still need to prove they must be (try it!)

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

§ Are X and Z independent given Y?
§ No: seeing traffic puts the rain and the 

ballgame in competition as explanation?

§ This is backwards from the other cases
§ Observing an effect activates influence 

between possible causes.



The General Case

§ Any complex example can be analyzed 
using these three canonical cases

§ General question: in a given BN, are two 
variables independent (given evidence)?

§ Solution: analyze the graph



Reachability

§ Recipe: shade evidence nodes

§ Attempt 1: if two nodes are 
connected by an undirected path 
not blocked by a shaded node, 
they are conditionally independent R

T

B

D

L

§ Almost works, but not quite
§ Where does it break?
§ Answer: the v-structure at T 

doesn’t count as a link in a path 
unless “active”



Reachability (D-Separation)
§ Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
§ Yes, if X and Y “separated” by Z
§ Look for active paths from X to Y
§ No active paths = independence!

§ A path is active if each triple 
is active:
§ Causal chain A → B → C where B 

is unobserved (either direction)
§ Common cause A ← B → C where 

B is unobserved
§ Common effect (aka v-structure)
 A → B ← C where B or one of its 

descendents is observed

§ All it takes to block a path is 
a single inactive segment

 

Active Triples Inactive Triples



Example: Independent?

Yes R

T

B

T’



Example: Independent?

R

T

B

D

L

T’

Yes

Yes

Yes



Example

§ Variables:
§ R: Raining
§ T: Traffic
§ D: Roof drips
§ S: I’m sad

§ Questions:

T

S

D

R

Yes



Changing Bayes’ Net Structure

§ The same joint distribution can be 
encoded in many different Bayes’ nets

§ Analysis question: given some edges, 
what other edges do you need to add?
§ One answer: fully connect the graph
§ Better answer: don’t make any false 

conditional independence assumptions



Example: Coins

§ Extra arcs don’t prevent representing 
independence, just allow non-independence

h 0.5
t 0.5

X1 X2 X1 X2

h 0.5
t 0.5

h | h 0.5
t | h 0.5
h | t 0.5
t | t 0.5

§ Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5
t 0.5



Summary

§ Bayes nets compactly encode joint distributions

§ Guaranteed independencies of distributions can 
be deduced from BN graph structure

§ D-separation gives precise conditional 
independence guarantees from graph alone

§ A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution


