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Outline

§ Bayesian Networks Inference
§ Exact Inference: Variable Elimination
§ Approximate Inference: Sampling



Variable Elimination

§ Why is inference by enumeration so slow?
§ You join up the whole joint distribution before you sum 

out the hidden variables
§ You end up repeating a lot of work!

§ Idea: interleave joining and marginalizing!
§ Called “Variable Elimination”
§ Still NP-hard, but usually much faster than inference 

by enumeration

§ We’ll need some new notation to define VE



Example: Traffic Domain

§ Random Variables
§ R: Raining
§ T: Traffic
§ L: Late for class!

T

L

R +r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

§ First query: P(L)

BRIEF ARTICLE

THE AUTHOR

P (l) =
�

t

�

r

P (l|t)P (t|r)P (r)
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§ Maintain a set of tables called factors
§ Initial factors are local CPTs (one per node)

Variable Elimination Outline

+r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

+t +l 0.3
-­‐t +l 0.1

+r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

§ Any known values are selected
§ E.g. if we know                  , the initial factors are

§ VE: Alternately join factors and eliminate variables



§ First basic operation: joining factors
§ Combining factors:

§ Just like a database join
§ Get all factors over the joining variable
§ Build a new factor over the union of the variables involved

§ Example: Join on R

Operation 1: Join Factors

+r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

T

R
+r +t 0.08
+r -­‐t 0.02
-­‐r +t 0.09
-­‐r -­‐t 0.81

R,T

§ Computation for each entry: pointwise products



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

+r +t 0.08
+r -­‐t 0.02
-­‐r +t 0.09
-­‐r -­‐t 0.81

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9



Example: Multiple Joins

Join TR, T

L

+r +t 0.08
+r -­‐t 0.02
-­‐r +t 0.09
-­‐r -­‐t 0.81

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

R, T, L

+r +t +l 0.024

+r +t -­‐l 0.056

+r -­‐t +l 0.002

+r -­‐t -­‐l 0.018

-­‐r +t +l 0.027

-­‐r +t -­‐l 0.063

-­‐r -­‐t +l 0.081

-­‐r -­‐t -­‐l 0.729



Operation 2: Eliminate

§ Second basic operation: marginalization
§ Take a factor and sum out a variable

§ Shrinks a factor to a smaller one
§ A projection operation

§ Example:

+r +t 0.08
+r -­‐t 0.02
-­‐r +t 0.09
-­‐r -­‐t 0.81

+t 0.17
-­‐t 0.83



Multiple Elimination

R, T, L

+r +t +l 0.024

+r +t -­‐l 0.056

+r -­‐t +l 0.002

+r -­‐t -­‐l 0.018

-­‐r +t +l 0.027

-­‐r +t -­‐l 0.063

-­‐r -­‐t +l 0.081

-­‐r -­‐t -­‐l 0.729

T, L

+t +l 0.051
+t -­‐l 0.119
-­‐t +l 0.083
-­‐t -­‐l 0.747

L

+l 0.134
-­‐l 0.886

Sum
out R

Sum
out T



P(L) : Marginalizing Early!

Sum out R

T

L

+r +t 0.08
+r -­‐t 0.02
-­‐r +t 0.09
-­‐r -­‐t 0.81

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

+t 0.17
-­‐t 0.83

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

T

R

L

+r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

Join R

R, T

L



Marginalizing Early (aka VE*)

* VE is variable elimination

T

L

+t 0.17
-­‐t 0.83

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

T, L

+t +l 0.051

+t -­‐l 0.119

-­‐t +l 0.083

-­‐t -­‐l 0.747

L

+l 0.134
-­‐l 0.886

Join T Sum out T



§ If evidence, start with factors that select that evidence
§ No evidence uses these initial factors:

§ Computing                        , the initial factors become:

§ We eliminate all vars other than query + evidence

Evidence

+r 0.1
-­‐r 0.9

+r +t 0.8
+r -­‐t 0.2
-­‐r +t 0.1
-­‐r -­‐t 0.9

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9

+r 0.1 +r +t 0.8
+r -­‐t 0.2

+t +l 0.3
+t -­‐l 0.7
-­‐t +l 0.1
-­‐t -­‐l 0.9



§ Result will be a selected joint of query and evidence
§ E.g. for P(L | +r), we’d end up with:

Evidence II

+r +l 0.026
+r -­‐l 0.074

+l 0.26
-­‐l 0.74

Normalize

§ To get our answer, just normalize this!

§ That’s it!



General Variable Elimination

§ Query:

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables (not Q or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

§ Join all remaining factors and normalize



Variable Elimination Bayes Rule

A B P
+a +b 0.08
+a ¬b 0.09

B A P
+b +a 0.8
b ¬a 0.2
¬b +a 0.1
¬b ¬a 0.9

B P
+b 0.1
¬b 0.9 a

B a, B

Start / Select Join on B Normalize

A B P
+a +b 8/17
+a ¬b 9/17



Example

Choose A

Query:



Example

Choose E

Finish with B

Normalize



Exact Inference: Variable Elimination

§ Remaining Issues:
§ Complexity: exponential in tree width (size of the 

largest factor created)
§ Best elimination ordering? NP-hard problem

§ We have seen a special case of VE already
§ HMM Forward Inference

§ What you need to know:
§ Should be able to run it on small examples, understand 

the factor creation / reduction flow
§ Better than enumeration: saves time by marginalizing 

variables as soon as possible rather than at the end



Approximate Inference

§ Simulation has a name: sampling

§ Sampling is a hot topic in machine learning,
and it’s really simple

§ Basic idea:
§ Draw N samples from a sampling distribution S
§ Compute an approximate posterior probability
§ Show this converges to the true probability P

§ Why sample?
§ Learning: get samples from a distribution you don’t know
§ Inference: getting a sample is faster than computing the right 

answer (e.g. with variable elimination)

S

A

F



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-­‐c 0.5

+c
+s 0.1

+c -­‐s 0.9

-­‐c
+s 0.5

-­‐c -­‐s 0.5

+c
+r 0.8

+c -­‐r 0.2

-­‐c
+r 0.2

-­‐c -­‐r 0.8

+s

+r
+w 0.99

+s

+r -­‐w 0.01

+s -­‐r
+w 0.90

+s -­‐r -­‐w 0.10

-­‐s

+r
+w 0.90

-­‐s

+r -­‐w 0.10

-­‐s -­‐r
+w 0.01

-­‐s -­‐r -­‐w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

§ This process generates samples with probability:

 …i.e. the BN’s joint probability

§ Let the number of samples of an event be
§ Then

§ I.e., the sampling procedure is consistent



Example

§ We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r,  -w
 +c, -s, +r, +w
 -c,  -s,  -r, +w

§ If we want to know P(W)

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

§ We have counts <+w:4, -w:1>
§ Normalize to get P(W) = <+w:0.8, -w:0.2>
§ This will get closer to the true distribution with more samples
§ Can estimate anything else, too
§ What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?
§ Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling

§ Let’s say we want P(C)

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

§ Let’s say we want P(C| +s)
§ Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 
have S=+s

§ This is called rejection sampling
§ It is also consistent for conditional 

probabilities (i.e., correct in the 
limit)

§ No point keeping all samples around
§ Just tally counts of C as we go



Likelihood Weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, you reject a lot of samples
§ You don’t exploit your evidence as you sample
§ Consider P(B|+a)

Burglary Alarm

Burglary Alarm

 -b,  -a
 -b,  -a
 -b,  -a
 -b,  -a
+b, +a

 -b  +a
 -b, +a
 -b, +a
 -b, +a
+b, +a

§ Idea: fix evidence variables and sample the rest

§ Problem: sample distribution not consistent!
§ Solution: weight by probability of evidence given parents



Likelihood Weighting
+c 0.5
-­‐c 0.5

+c
+s 0.1

+c -­‐s 0.9

-­‐c
+s 0.5

-­‐c -­‐s 0.5

+c
+r 0.8

+c -­‐r 0.2

-­‐c
+r 0.2

-­‐c -­‐r 0.8

+s

+r
+w 0.99

+s

+r -­‐w 0.01

+s -­‐r
+w 0.90

+s -­‐r -­‐w 0.10

-­‐s

+r
+w 0.90

-­‐s

+r -­‐w 0.10

-­‐s -­‐r
+w 0.01

-­‐s -­‐r -­‐w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
§ Sampling distribution if z sampled and e fixed evidence

§ Now, samples have weights

§ Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Likelihood Weighting
§ Likelihood weighting is good

§ We have taken evidence into account as 
we generate the sample

§ E.g. here, W’s value will get picked 
based on the evidence values of S, R

§ More of our samples will reflect the state 
of the world suggested by the evidence

§  Likelihood weighting doesn’t solve 
all our problems
§ Evidence influences the choice of 

downstream variables, but not upstream 
ones (C isn’t more likely to get a value 
matching the evidence)

§ We would like to consider evidence 
when we sample every variable

Cloudy

Rain

C

S R

W



Markov Chain Monte Carlo*
§ Idea: instead of sampling from scratch, create samples 

that are each like the last one.

§ Gibbs Sampling: resample one variable at a time, 
conditioned on the rest, but keep evidence fixed. 

+a +c+b +a +c-b -a +c-b

§ Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators!

§ What’s the point: both upstream and downstream 
variables condition on evidence.


