CE 473: Artificial Intelligence

Autumn 2011

A* Search

Luke Zettlemoyer
Based on slides from Dan Klein

Multiple slides from Stuart Russell or Andrew Moore



Today

= A* Search
= Heuristic Design

= Graph search



Recap: Search

= Search problem:
= States (configurations of the world)

= Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

» Start state and goal test

= Search tree:
» Nodes: represent plans for reaching states
» Plans have costs (sum of action costs)

= Search Algorithm:

» Systematically builds a search tree
» Chooses an ordering of the fringe (unexplored nodes)



Example: Pancake Problem

Action: Flip over the
top n pancakes

N T

Cost: Number of pancakes flipped



Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU**

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o 1o the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,.. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function gi(n) is shown to obey 3n/2-1=g(n)=2n+3.




Example: Pancake Problem

State space graph with costs as weights

N




General Tree Search

function 1I'REE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end
 Action: fliptop ) /A —
two Path to reach goal:
_ Cost: 2 Flip four, flip three

/ Total cost: 7
1' TS




Uniform Cost Search

= Strategy: expand lowest
path cost

* The good: UCS is
complete and optimal!

= The bad:

= Explores options in every
“direction”

= No information about goal
location Goal



Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

3 —
4_/ h(x)
I |
4 — 3—\\
- — D=
— \/3\:
! 4 = ~_,




Best First (Greedy)

= Strategy: expand a node
that you think is closest
to a goal state
» Heuristic: estimate of

distance to nearest goal
for each state

= A common case:

= Best-first takes you
straight to the (wrong) goal

= Worst-case: like a badly-
guided DFS




Example: Heuristic Functio

Oradea

Neamt

T

Fagaras

Vaslui

80

Rimnicu Vilcea

Lugo) Pitesti

85 Hirsov

/ Urziceni

Bucharest
90

Mehadia

75
Dobreta — 120

Eforie
Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Cralova
Dobreta

Eforie

Fagaras
Glurgiu
Hirsova

lasi

Lugo)
Mehadia
Neamt

Oradea

Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind




Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Best-first orders by goal proximity, or forward cost h(n)

= A” Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



When should A* terminate?

= Should we stop when we enqueue a goal?

/ \
\/

= No: only stop when we dequeue a goal



Is A* Optimal?

O

o .

= What went wrong?
» Actual bad goal cost < estimated good goal cost
* We need estimates to be less than actual costs!



Admissible Heuristics

= A heuristic % is admissible (optimistic) if:

h(n) < h*(n)

where 1" (n) Is the true cost to a nearest goal

= Examples:
4

= Coming up with admissible heuristics is most
of what's involved in using A* in practice.




Notation:

Optimality of A*: Blocking

g(n) = cost to node n

h(n) = estimated cost from n

to the nearest goal (heuristic)

f(n) = g(n) + h(n) =
estimated total cost via n

G*: a lowest cost goal node

G: another goal node



Optimality of A*: Blocking

Proof:
= What could go wrong?

= We'd have to have to pop a
suboptimal goal G off the
fringe before G*

This can’t happen:

= For all nodes n on the f(n) = g(n) + h(n)
best path to G g(n) + h(n) < g(G*)
= So, G* will be popped 9 g '(.]( :)
before G g9(G) = f(G)
f(n) < f(G)



Properties of A*

Uniform-Cost

b

A*




UCS vs A* Contours

= Uniform-cost
expanded in all
directions

= A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Goal

@Goal



Which Algorithm?

= Uniform cost search (UCS):




Which Algorithm?

= A* Manhattan Heuristic:




Which Algorithm?

= Best First / Greedy, Manhattan Heuristic:




Creating Heuristics

o

N

8-puzzle:

6

'J-)

N

S 3

6

7

Start State
= \What are the states?

= How many states?
= \What are the actions?

Goal State

= \What states can | reach from the start state?

= \What should the costs be?




8 Puzzle |

= Heuristic: Number of
tiles misplaced

= h(start) = 8

= |s it admissible?

- S

6

7 S

7 2 '7 4

> §

S 3 I
Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps | ...12 steps
UCS |112 6,300 |3.6 x 106
TILES |13 39 227




8 Puzzle Il

= What if we had an 7l 2 I 4 LI o
easler 8-puzzle where
any tile could slide any 5 6 3 4 [l 5
direction at any time,
ignoring other tiles? Kl K 6 I 7 |if 3
s Total Manhattan Start State Goal State
distance
i — Average nodes expanded when
h(start) = optimagl path has Iepngth...
3+1+2+ ...
...4 steps | ...8 steps | ...12 steps
=18

TILES 13 39 227

= Admissible?

MANHATTAN | 12 25 73




8 Puzzle I

= How about using the actual cost as a
heuristic?
* Would it be admissible?
= \Would we save on nodes expanded?
» What's wrong with it?

= With A*: a trade-off between quality of
estimate and work per node!



Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

......

* |[nadmissible heuristics are often useful too (why?)



Trivial Heuristics, Dominance

= Dominance: h, = h_ if

ezact
Vn : ha(n) > he(n) |
max(ha, hy)
= Heuristics form a semi-lattice: T~
= Max of admissible heuristics is admissible ha hb
h(n) = max(hqe(n), hy(n)) |
he
* Trivial heuristics oo

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic



A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition



Tree Search: Extra Work!

» Failure to detect repeated states can cause
exponentially more work. Why?

A — A ®
f '

B =0 B® B®
! ! /

¢ /" cg c® cg co
f Y A n
f '



Graph Search

* [n BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

d e P
PN |

@ h r q
| @ N
a h r f

N @@/\

p q f q c G

| PN |



Graph Search

» |dea: never expand a state twice

= How to implement:

* Tree search + list of expanded states (closed list)

= Expand the search tree node-by-node, but...
= Before expanding a node, check to make sure its state is new

= Python trick: store the closed list as a set, not a list

= Can graph search wreck completeness? \Why/why not?

= How about optimality?



A* Graph Search Gone Wrong

State space graph Search tree

A (1+4) B (1+1)

l l

2 C (2+1) C (3+1)
\ G (5+0) G (6+0)

@ S (0+2)
ORI ORI
C




Optimality of A* Graph Search

Proof:

= Main idea: Argue that nodes are
popped with non-decreasing f-scores

= for all n,n’ with n’ popped after n :
= f(n’) = f(n)
= s this enough for optimality?

= Sketch:
= assume: f(n’) =2 f(n), for all edges (n,a,n’) and all actions a
= s this true?

= proof by induction: (1) always pop the lowest f-score from the
fringe, (2) all new nodes have larger (or equal) scores, (3) add
them to the fringe, (4) repeat!



Consistency

= Wait, how do we know parents have better f-values than
their successors?

/‘§; i
g=10

/- ’/’»

~ \.)l
h=10

= Consistency for all edges (n,a,n’):
= h(n) <c(n,a,n’) + h(n’)

= Proof that f(n’) 2 f(n),
= f(n’) =g(n’) + h(n’) = g(n) + c(n,a,n’) + h(n’) 2 g(n) + h(n) = f(n)



Optimality

= Tree search:

= A* optimal if heuristic is admissible (and non-
negative)

= UCS is a special case (h = 0)

= Graph search:
= A* optimal if heuristic is consistent
» UCS optimal (h = 0 is consistent)

= Consistency implies admissibility

= In general, natural admissible heuristics tend to
be consistent



Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible heuristics

= Heuristic design is key: often use relaxed
problems



To Do:

= Keep up with the readings
» Get started on PS1

= it Is long; start soon

= due in about a week



