
CE 473: Artificial Intelligence

Autumn 2011

A* Search

Luke Zettlemoyer
Based on slides from Dan Klein

Multiple slides from Stuart Russell or Andrew Moore

Today

§ A* Search

§ Heuristic Design

§ Graph search

Recap: Search

§ Search problem:
§ States (configurations of the world)
§ Successor function: a function from states to

lists of (state, action, cost) triples; drawn as a graph
§ Start state and goal test

§ Search tree:
§ Nodes: represent plans for reaching states
§ Plans have costs (sum of action costs)

§ Search Algorithm:
§ Systematically builds a search tree
§ Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the
top n pancakes

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

3

General Tree Search

Action: flip top
two

Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

Uniform Cost Search

§ Strategy: expand lowest
path cost

§ The good: UCS is
complete and optimal!

§ The bad:
§ Explores options in every

“direction”
§ No information about goal

location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

Example: Heuristic Function
Heuristic: the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Best First (Greedy)

§ Strategy: expand a node
that you think is closest
to a goal state
§ Heuristic: estimate of

distance to nearest goal
for each state

§ A common case:
§ Best-first takes you

straight to the (wrong) goal

§ Worst-case: like a badly-
guided DFS

…
b

…
b

Example: Heuristic Function

h(x)

Combining UCS and Greedy

§ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

5

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

§ Uniform-cost orders by path cost, or backward cost g(n)
§ Best-first orders by goal proximity, or forward cost h(n)

1

§ Should we stop when we enqueue a goal?

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

§ No: only stop when we dequeue a goal

Is A* Optimal?

A

GS

1
3

h = 6

h = 0

5

h = 7

§ What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!

Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

4 15

§ Examples:

§ Coming up with admissible heuristics is most
of what’s involved in using A* in practice.

Optimality of A*: Blocking

…Notation:
§ g(n) = cost to node n

§ h(n) = estimated cost from n

to the nearest goal (heuristic)

§ f(n) = g(n) + h(n) =

estimated total cost via n

§ G*: a lowest cost goal node

§ G: another goal node

Optimality of A*: Blocking

Proof:
§ What could go wrong?
§ We’d have to have to pop a

suboptimal goal G off the
fringe before G*

…

§ This can’t happen:
§ For all nodes n on the

best path to G*
§ f(n) < f(G)

§ So, G* will be popped
before G

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

§ Uniform-cost
expanded in all
directions

§ A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Start Goal

Start Goal

Which Algorithm?

§ Uniform cost search (UCS):

Which Algorithm?

§ A*, Manhattan Heuristic:

Which Algorithm?

§ Best First / Greedy, Manhattan Heuristic:

Creating Heuristics

§ What are the states?
§ How many states?
§ What are the actions?
§ What states can I reach from the start state?
§ What should the costs be?

8-puzzle:

8 Puzzle I

§ Heuristic: Number of
tiles misplaced

§ h(start) = 8

Average nodes expanded when
optimal path has length…
Average nodes expanded when
optimal path has length…
Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

§ Is it admissible?

8 Puzzle II

§ What if we had an
easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

§ Total Manhattan
distance

§ h(start) =
3 + 1 + 2 + …

 = 18

Average nodes expanded when
optimal path has length…
Average nodes expanded when
optimal path has length…
Average nodes expanded when
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73§ Admissible?

8 Puzzle III

§ How about using the actual cost as a
heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of
estimate and work per node!

Creating Admissible Heuristics
§ Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

15
366

§ Inadmissible heuristics are often useful too (why?)

Trivial Heuristics, Dominance

§ Dominance: ha ≥ hc if

§ Heuristics form a semi-lattice:
§ Max of admissible heuristics is admissible

§ Trivial heuristics
§ Bottom of lattice is the zero heuristic (what

does this give us?)
§ Top of lattice is the exact heuristic

A* Applications

§ Pathing / routing problems
§ Resource planning problems
§ Robot motion planning
§ Language analysis
§ Machine translation
§ Speech recognition
§ …

Tree Search: Extra Work!

§ Failure to detect repeated states can cause
exponentially more work. Why?

Graph Search

§ In BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search
§ Idea: never expand a state twice

§ How to implement:

§ Tree search + list of expanded states (closed list)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state is new

§ Python trick: store the closed list as a set, not a list

§ Can graph search wreck completeness? Why/why not?

§ How about optimality?

A* Graph Search Gone Wrong

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4
h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

S

A

B

C

G

State space graph Search tree

Optimality of A* Graph Search
Proof:
§ Main idea: Argue that nodes are

popped with non-decreasing f-scores
§ for all n,n’ with n’ popped after n :

§ f(n’) ≥ f(n)
§ is this enough for optimality?

§ Sketch:
§ assume: f(n’) ≥ f(n), for all edges (n,a,n’) and all actions a

§ is this true?
§ proof by induction: (1) always pop the lowest f-score from the

fringe, (2) all new nodes have larger (or equal) scores, (3) add
them to the fringe, (4) repeat!

Consistency
§ Wait, how do we know parents have better f-values than

their successors?

A

B

G

3
h = 0

h = 10

g = 10

§ Consistency for all edges (n,a,n’):
§ h(n) ≤ c(n,a,n’) + h(n’)

§ Proof that f(n’) ≥ f(n),
§ f(n’) = g(n’) + h(n’) = g(n) + c(n,a,n’) + h(n’) ≥ g(n) + h(n) = f(n)

h = 8

Optimality

§ Tree search:
§ A* optimal if heuristic is admissible (and non-

negative)
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, natural admissible heuristics tend to
be consistent

Summary: A*

§ A* uses both backward costs and
(estimates of) forward costs

§ A* is optimal with admissible heuristics

§ Heuristic design is key: often use relaxed
problems

To Do:

§ Keep up with the readings
§ Get started on PS1
§ it is long; start soon
§due in about a week

