Ensembles

e An ensemble Is a set of classifiers whose
combined results give the final decision.
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Model*Ensembles

e Basic idea:
Instead of learning one model,
Learn several and combine them

e Typically improves accuracy, often by a lot

¢ Many methods:
— Bagging
— Boosting
— ECOC (error-correcting output coding)
— Stacking
— Etc.

*A model is the learned decision rule. It can be as simple as a
hyperplane in n-space (ie. a line in 2D or plane in 3D) or in the
form of a decision tree or other modern classifier.




Majority Vote for Several Linear Models



Bagging

e Generate “bootstrap” replicates of training set
by sampling with replacement

e Learn one model on each replicate

¢ Combine by uniform voting
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Boosting

Maintain vector of weights for examples
Initialize with uniform weights

Loop:
— Apply learner to weighted examples (or sample)

— Increase weights of misclassified examples

Combine models by weighted voting



ldea of Boosting




Boosting In More Detall
(Pedro Domingos’ Algorithm)

. Set all E weights to 1, and learn H1.

. Repeat m times: increase the weights of
misclassified Es, and learn H2,...Hm.

. H1..Hm have “weighted majority” vote
when classifying each test
Weight(H)=accuracy of H on the training
data




ADABOOsSt

« ADABoOoOSst boosts the accuracy of the
original learning algorithm.

 If the original learning algorithm does
slightly better than 50% accuracy,
ADABoost with a large enough number of
classifiers is guaranteed to classify the
training data perfectly.



ADABoost Weight Updating

for ) =1 to N do /* go through training samples */
If h[m](xj) <> yj then error <- error + wj

forj=1toNdo
If h[m](xj) = yj then w[j] <- wl[j] * error/(1-error)
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Sample Application: Insect Recognition

Using circular regions of interest selected by an interest operator,
train a classifier to recognize the different classes of insects.
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Boosting Comparison

ADTree classifier only (alternating decision tree)

Correctly Classified Instances 268 70.1571 %
Incorrectly Classified Instances 114 29.8429 %
Mean absolute error 0.3855
Relative absolute error 77.2229 %
Classified as -> Hesperperla Doroneuria
Real 167 28
Hesperperlas
Real 51 136
Doroneuria




Boosting Comparison

AdaboostM1 with ADTree classifier

* Correctly Classified Instances 303 79.3194 %
* Incorrectly Classified Instances 79 20.6806 %
 Mean absolute error 0.2277
* Relative absolute error 45.6144 %
Classified as -> Hesperperla Doroneuria
Real 167 28
Hesperperlas
Real 51 136
Doroneuria
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Boosting Comparison

RepTree classifier only (reduced error pruning)

Correctly Classified Instances 294 75.3846 %
Incorrectly Classified Instances 96 24.6154 %
Mean absolute error 0.3012
Relative absolute error 60.606 %
Classified as -> | Hesperperla Doroneuria
Real 169 41
Hesperperlas
Real 55 125
Doroneuria
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Boosting Comparison

AdaboostM1 with RepTree classifier

» Correctly Classified Instances 324 83.0769 %
* Incorrectly Classified Instances 66 16.9231 %
 Mean absolute error 0.1978
* Relative absolute error 39.7848 %
Classified as -> | Hesperperla Doroneuria
Real 180 30
Hesperperlas
Real 36 144
Doroneuria
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Stacking

e Apply multiple base learners
(e.g.: decision trees, naive Bayes, neural nets)

e Meta-learner: Inputs = Base learner predictions

e Training by leave-one-out cross-validation:
Meta-L. inputs = Predictions on left-out examples

¢ Decision Tree |-
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Yu-Yu Chou’s Hierarchical Classifiers

Developed for pap smear analysis in which the

categories were normal, abnormal (cancer), and

artifact plus subclasses of each

More than 300 attributes per feature vector and
little or no knowledge of what they were.

Large amount of training data making classifier
construction slow or impossible.
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Classification

Lol I TREINING DATA CLUSTER | RAIK
Cloa {TEST DATE) =% 'FO

EFFOR
A INSTEHCES
|

. !
(| | (- _| L iHl . iCE

L | HEN DATA
Clmas = | | e -
l Opticnal ' & beinabies

['EIJFEH-EL.'EEFIE ]

20



Results

Our classifier was able to beat the handcrafted decision
tree classifier that had taken Neopath years to develop.

It was tested successfully on another pap smear data set
and a forest cover data set.

It was tested against bagging and boosting. It was better
at detecting abnormal pap smears than both, and not as

good at classifying normal ones as normal. It was slightly
higher than both in overall classification rate.
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Bayesian Learning

e Bayes’ Rule provides a way to calculate
probability of a hypothesis based on

— Its prior probability

— the probability of observing the data, given
that hypothesis

— the observed data (feature vector)
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Bayes’ Rule

Ph|X) =

P(X'|'h) P(h)

h is the hypothesis (such as the class).
X Is the feature vector to be classified.

P(X | h) is the prior probability that this feature vector
occurs, given that h is true.

P(h) is the prior probability of hypothesis h.

Often assumed
constant and
left out.

P(X) = the prior probabillity of the feature vector X.
These priors are usually calculated from frequencies in

the training data set.
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X1 x2 x3

Example 0 0 0

0 01

010

e Suppose we want to know the 0 11
. 1 00
probabilty of class 1 for feature 10 1
vector [0,1,0]. 110
1 11

OCOPFRPOPRFRPFRFOPRPRK

. P(1][0,1,0]) = P([0,1,0] | 1) P(1) / P([0,1,0])
= (0.25) (0.5) / (.125)
= 1.0

Of course the training set would be much bigger and
for real data could include multiple instances of a
given feature vector.
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MAP

Suppose H is a set of candidate hypotheses.
We would like to find the most probable h in H.
hyap IS @ MAP (maxiumum a posteriori) hypothesis if

hyap = argmax P(h | X)
heH

This just says to calculate P(h | X) by Bayes’ rule for each possible
class h and take the one that gets the highest score.
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Cancer Test Example

P(cancer) = .008

P(not cancer) = .992
P(positive | cancer) = .98
P(positive | not cancer) = .03
P(negative | cancer) = .02
P(negative | not cancer) =.97

Priors

New patient’s test comes back positive.

P(cancer | positive) = P(positive | cancer) P(cancer)
= (.98) (.008) = .0078

P(not cancer | positive = P(positive | not cancer) P(not cancer)
= (.03) (.992) = .0298

hyap WoUld say it's not cancer. Depends strongly on priors!
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Neural Net Learning

Motivated by studies of the brain.

A network of “artificial neurons” that learns a
function.

Doesn’t have clear decision rules like decision
trees, but highly successful in many different
applications. (e.g. face detection)

Our hierarchical classifier used neural net
classifiers as its components.
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Brains

neurons of = 2 types, synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arbonzation

Aacon from another cell

\

Synapse

Diend rite

Muclous

(/

Synapses

Cell body or Soma
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McCulloch—Pitts “unit”

QOutput 1s a “squashed” linear function of the inputs:
a; «— qi ."”.i | q :: w" I ] -I-'_jﬁ' j ]
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A gross oversimplification of real neurons, but its purpose Is
to develop understanding of what networks of simple units can do
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Activation functions

i o)

+1

a.ri'|.-

(a) (b

(a) is a step function or threshold function
(b} is a sigmoid function /(1 + e ")

Changing the bias weight 17 ; moves the threshold location
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Feed-forward example
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Feed-forward network = a parameterized family of nonlinear functions:
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Adjusting weights changes the function: deo learning this way!



Perceptron learning \

Learn by adjusting weights to reduce error on training set

The squared error for an example with input X and true output y Is

E _—'}f'_'.r.r"} =y hw(x))? .

Perform optimization search by gradient descent:
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Simple weight update rule:

W; — W, + a x Err x g'lin) x x;

E.g., +ve error == Increase network output
increase weights on +ve Inputs, decrease on -ve inputs
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I Perceptron learning contd. H

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent It
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Multilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units d,

Hidden units a,

[nput units g




I Back—prnpagatinn learning

Qutput layer: same as for single-layer perceptron,
H; H-_Ja_,a - & X '“'_." », j.,i
where A; = Erry < g'(ing)
Hidden layer: hack-propagate the error frem the output layer:
Ay =glim) S WA,
i
Update rule for weights in hidden layer:
Wi — Wi +axap < 4.

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapmr My Secrlon &



Back-propagation learning contd. \

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

—%
e

Total error on training set

0 30 100 150 200 230 2300 350 400
Mumber of epochs

Typical problems: slow convergence, local minima

mnpmr I, Swcrlon & 1=



I Back-propagation learning contd. “

Learning curve for MLF with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) =~ 0.6% error



Summary |

Most brains have lots of neurons; each neuron == linear-threshold unit {7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, 1.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system maodelling
subfields have largely diverged

Chapmr 3F, Swerlon §
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