Knowledge & Reasoning

 Logical Reasoning: to have a computer automatically perform deduction or prove theorems

Knowledge Representations: modern ways of representing large bodies of knowledge

Logical Reasoning

- In order to communicate, we need a formal language in which to express
 - axioms
 - theorems
 - hypotheses
 - rules
- Common languages include
 - propositional logic
 - 1st order predicate logic

Propositional Logic

- Propositions are statements that are true or false.
 - P: Sierra is a dog
 - Q: Muffy is a cat
 - R: Sierra and Muffy are not friends
- Propositions can be combined using logic symbols

$\mathsf{P} \land \mathsf{Q} \Longrightarrow \mathsf{R} \qquad \neg \mathsf{P} \lor \mathsf{Q}$

Predicate Logic

- Formulas have predicates with variables and constants:
 - man(Marcus)
 - Pompeian(Marcus)
 - born(Marcus, 40)
- More symbols
 - \forall for every
 - $-\exists$ there exists

 $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$ $\exists x \text{ Pompeian}(x)$

Ancient Pompei

I was there in 2009.

Ancient Theater

Ancient Garden (Plants are new.)

Vesuvius

Predicate Logic Example

- 1. Pompeian(Marcus)
- 2. born(Marcus,40)
- 3. man(Marcus)
- 4. $\forall x man(x) \Rightarrow mortal(x)$
- 5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$
- 6. erupted(Vesuvius,79)
- 7. $\forall x \forall t1 \forall t2 mortal(x) \land born(x,t1) \land gt(t2-t1,150) \Rightarrow dead(x,t2)$

Dead Guy in 2009

8. gt(now,79)

Some Rules of Inference

9. $\forall x \forall t \ [alive(x,t) \Rightarrow \neg dead(x,t)] \land$ [$\neg dead(x,t) \Rightarrow alive(x,t)]$

If x is alive at time t, he's not dead at time t, and vice versa.

10. $\forall x \forall t1 \forall t2 \operatorname{died}(x,t1) \land gt(t2,t1) \Rightarrow \operatorname{dead}(x,t2)$

If x died at time t1 and t2 is later, x is still dead at t2.

Prove dead(Marcus, now)

- 1. Pompeian(Marcus)
- 2. born(Marcus,40)
- 3. man(Marcus)
- 4. $\forall x man(x) \Rightarrow mortal(x)$
- 5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$
- 6. erupted(Vesuvius,79)
- 7. $\forall x \forall t1 \forall t2 mortal(x) \land born(x,t1) \land gt(t2-t1,150) \Rightarrow dead(x,t2)$
- 8. gt(now,79)
- 9. $\forall x \forall t \ [alive(x,t) \Rightarrow \neg dead(x,t)] \land [\neg dead(x,t) \Rightarrow alive(x,t)]$
- 10. $\forall x \forall t1 \forall t2 \operatorname{died}(x,t1) \land gt(t2,t1) \Rightarrow \operatorname{dead}(x,t2)$

Prove dead(Marcus,now) Direct Proof

- 1. Pompeian(Marcus)
- 5. $\forall x \text{ Pompeian}(x) \Rightarrow \text{died}(x,79)$

died(Marcus,79)

8. gt(now,79)

died(Marcus,79) \land gt(now,79)

7. $\forall x \forall t1 \forall t2 \operatorname{died}(x,t1) \land gt(t2,t1) \Rightarrow \operatorname{dead}(x,t2)$

dead(Marcus,now)

Proof by Contradiction

¬ dead(Marcus,now)

 $\forall x \ \forall t1 \ \forall t2 \ died(x,t1) \land gt(t2,t1) \Rightarrow dead(x,t2)$

 $\forall t1 \neg [died(Marcus,t1) \land gt(now,t1)]$

What substitutions were made here? What rule of inference was used?

Marcus for x; now for t2

If $x \Rightarrow y$ then $\neg y \Rightarrow \neg x$

Proof by Contradiction

*assume we proved this separately

Resolution Theorem Provers for Predicate Logic

- Given:
 - F: a set of axioms represented as formulas
 - S: a conjecture represented as a formula
- Prove: F logically implies S
- Technique
 - Construct ¬S, the negated conjecture
 - Show that F' = $F \cup \{\neg S\}$ leads to a contradiction
 - Conclude: $\neg{\{\neg S\}}$ or S

Part I: Preprocessing to express in Conjunctive Normal Form

- 1. Eliminate implication operator \Rightarrow
- Replace $A \Rightarrow B by \lor (\neg A,B)$

• Example:

 $man(x) \Rightarrow mortal(x)$ is replaced by $(\neg man(x), mortal(x))$ or in infix notation $\neg man(x) \lor mortal(x)$

- Reduce the scope of each
 ¬ to apply to at most one predicate by applying rules:
- Demorgan's Laws

 $\neg \lor (x1,...,xn)$ is equivalent to $\land (\neg x1,...,\neg xn)$ $\neg \land (x1,...,xn)$ is equivalent to $\lor (\neg x1,...,\neg xn)$

- $\neg(\neg x) \Longrightarrow x$
- $\neg(\forall x A) \Rightarrow \exists x(\neg A)$
- $\neg(\exists x A) \Rightarrow \forall x(\neg A)$

- Example
- $\neg [\forall x \forall t1 \forall t2 [died(x,t1) \land gt(t2,t1)] \Rightarrow dead(x,t2)]$
- Get rid of the implication
- $\neg [\forall x \forall t1 \forall t2 \neg [died(x,t1) \land gt(t2,t1)] \lor dead(x,t2)]$
- Apply the rule for \neg [\forall
- $\exists x \exists t1 \exists t2 \neg (\neg [died(x,t1) \land gt(t2,t1)] \lor dead(x,t2))$
- Apply DeMorgan's Law
 - $\exists x \exists t1 \exists t2 \neg \neg [died(x,t1) \land gt(t2,t1)] \land \neg dead(x,t2)$
 - $\exists x \exists t1 \exists t2 died(x,t1) \land gt(t2,t1) \land \neg dead(x,t2)]$

3. Standardize Variables

Rename variables so that each quantifier binds a unique variable

```
\forall x [P(x) \land \exists x Q(x)]
becomes
\forall x [P(x) \land \exists y Q(y)]
```

- 4. Eliminate existential qualifiers by introducing Skolem functions.
- Example

$\forall x \forall y \exists z P(x,y,z)$

- The variable z depends on x and y.
- So z is a function of x and y.
- We choose an arbitrary function name, say f, and replace z by f(x,y), eliminating the ∃.

 $\forall x \forall y P(x,y,f(x,y))$

- 5. Rewrite the result in Conjunctive Normal Form (CNF)
- \wedge (x1,...,xn) where the xi can be
- atomic formulas A(x)
- negated atomic formulas
- disjunctions

This uses the rule

 \vee (x1, \wedge (x2, ..., xn) = \wedge (\vee (x1,x2), ..., \vee (x1,xn))

 $\neg A(x)$

 $A(x) \vee P(y)$

6. Since all the variables are now only universally quantified, eliminate the ∀ as understood.

```
\forall x \forall t1 \forall t2 \neg died(x,t1) \lor \neg gt(t2,t1) \lor dead(x,t2)
```

becomes

 $\neg died(x,t1) \lor \neg gt(t2,t1) \lor dead(x,t2)$

Clause Form

- The clause form of a set of original formulas consists of a set of clauses as follows.
 - A literal is an atom or negation of atom.
 - A clause is a disjunction of literals.
 - A formula is a conjunction of clauses.
- Example

Clause 1: $\{A(x), \neg P(g(x,y),z), \neg R(z)\}$ (implicit or) Clause 2: $\{C(x,y), Q(x,y,z)\}$ (another implicit or)

Steps in Proving a Conjecture

- 1. Given a set of axioms F and a conjecture S, let $F' = F \cup \neg S$ and find the clause form C of F'.
- 2. Iteratively try to find new clauses that are logically implied by C.
- If NIL is one of these clauses you produce, then F' is unsatisfiable and the conjecture is proved.
- 4. You get NIL when you produce something that has A and also has $\neg A$.

Resolution Procedure

- 1. Convert F to clause form: a set of clauses.
- 2. Negate S, convert it to clause form, and add it to your set of clauses.
- 3. Repeat until a contradiction or no progress
 - a. Select two parent clauses.
 - b. Produce their resolvent.
 - c. If the resolvent = NIL, we are done.
 - d. Else add the resolvent to the set of clauses.

Resolution for Propositions

- Let $C1 = L1 \lor L2 \lor ... \lor Ln$
- Let C2 = L1' \vee L2' \vee ... \vee Ln'
- If C1 has a literal L and C2 has the opposite literal —L, they cancel each other and produce resolvent(C1,C2) =

 $L1 \lor L2 \lor ... \lor Ln \lor L1' \lor L2' \lor ... \lor Ln'$

with both L and \neg L removed

If no 2 literals cancel, nothing is removed

Propositional Logic Example

- Formulas: $P \lor Q$, $P \Rightarrow Q$, $Q \Rightarrow R$
- Conjecture: R
- Negation of conjecture: $\neg R$
- Clauses: { $P \lor Q, \neg P \lor Q, \neg Q \lor R, \neg R$ }
- Resolvent(P \lor Q, \neg P \lor Q) is Q. Add Q to clauses.
- Resolvent($\neg Q \lor R$, $\neg R$) is $\neg Q$. Add $\neg Q$ to clauses.
- Resolvent(Q, \neg Q) is NIL.
- The conjecture is proved.

Refutation Graph

Original Clauses: {P \lor Q, \neg P \lor Q, \neg Q \lor R, \neg R}

Exercise

• Given $P \Rightarrow R$ and $R \Rightarrow Q$, prove that $P \Rightarrow Q$

Resolution for Predicates

- Requires a matching procedure that compares 2 literals and determines whether there is a set of substitutions that makes them identical.
- This procedure is called unification.
 - C1 = eats(Tom x)
 - C2 = eats(Tom, ice cream)
- The substituion ice cream/x (read "ice cream for x") makes C1 = C2.
- You can substitute constants for variables and variables for variables, but nothing for constants.

Proof Using Unification

- Given $\forall x P(x) \Rightarrow R(x)$ $\forall z R(z) \Rightarrow Q(z)$
- Prove $\forall x P(x) \Rightarrow Q(x)$
- Negation $\neg \forall x P(x) \Rightarrow Q(x)$
- $\exists x \neg (P(x) \Longrightarrow Q(x))$
- $\exists x \neg (\neg P(x) \lor Q(x))$
- ∃x P(x) ∧ ¬ Q(x)
- P(a) ∧ ¬ Q(a)*

{P(a)} {¬ Q(a)}

 $\{\neg P(x), R(x)\}$

 $\{\neg R(z), Q(z)\}$

* Skolem function for a single variable is just a constant

Refutation Graph with Unification

Another Pompeian Example

- 1. man(Marcus)
- 2. Pompeian(Marcus)
- 3. \neg Pompeian(x1) \lor Roman(x1)
- 4. ruler(Caesar)
- 5. $\neg Roman(x2) \lor loyalto(x2,Caesar) \lor hate(x2,Caesar)$
- 6. loyalto(x3,f1(x3))
- 7. \neg man(x4) $\lor \neg$ ruler(y1) $\lor \neg$ tryassissinate(x4,y1) $\lor \neg$ loyalto(x4,y1)
- 8. tryassissinate(Marcus,Caesar)

Prove: Marcus hates Caesar

Another Pompeian Example

- 5. \neg Roman(x2) \lor loyalto(x2,Caesar) \lor hate(x2,Caesar) 6. loyalto(x3,f1(x3))
- 7. \neg man(x4) $\lor \neg$ ruler(y1) $\lor \neg$ tryassissinate(x4,y1) $\lor \neg$ loyalto(x4,y1)
- 8. tryassissinate(Marcus,Caesar)
- 5. If x2 is Roman and not loyal to Caesar then x2 hates Caesar.
- 6. For every x3, there is someone he is loyal to.
- 7. If x4 is a man and y1 is a ruler and x4 tries to assassinate x1 then x4 is not loyal to y1.
- 8. Marcus tried to assassinate Caesar.

The Monkey-Bananas Problem (Simplified) Axioms

1) $\forall x \forall s \{\neg ONBOX(s) \rightarrow AT(box, x, pushbox(x,s)) \}$

For each position x and state s, if the monkey isn't on the box in state s, then the box will be pushed to position x and the new state is pushbox(x,s).

2) $\forall s \{ONBOX(climbbox(s))\}$

For all states s, the monkey will be on the box in the state achieved by applying climbbox to s.

3) $\forall s \{ONBOX(s) \land AT(box, c, s) \rightarrow HB(grasp(s)) \}$

For all states s, if the monkey is on the box and the box is at position c in state s, then HB is true of the state attained by applying grasp to s.

4) $\forall x \forall s \{AT(box, x, s) \rightarrow AT(box, x, climbbox(s))\}$

The position of the box does not change when the monkey climbs on it, but the state does.

5) $\neg ONBOX(s_0)$

Monkey Solution

 If we change the conjecture to {¬HB(s), HB(s)} the result of the refutation becomes:

HB(grasp(climbbox(pushbox(c,s0)))