
Knowledge & Reasoning

• Logical Reasoning: to have a computer 
automatically perform deduction or prove 
theorems

• Knowledge Representations: modern ways of 
representing large bodies of knowledge
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Logical Reasoning

• In order to communicate, we need a formal 
language in which to express
– axioms
– theorems
– hypotheses
– rules

• Common languages include
– propositional logic
– 1st order predicate logic
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Propositional Logic

• Propositions are statements that are true or 
false.
– P:  Sierra is a dog

– Q: Muffy is a cat

– R: Sierra and Muffy are not friends

• Propositions can be combined using logic 
symbols

P ∧ Q ⇒ R ¬P ∨ Q
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Predicate Logic

• Formulas have predicates with variables and 
constants: 
– man(Marcus)
– Pompeian(Marcus)
– born(Marcus, 40)

• More symbols
– ∀ for every ∀x Pompeian(x) ⇒ died(x,79)
– ∃ there exists ∃x Pompeian(x)
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Ancient Pompei
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I was there in 2009.
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Ancient Theater
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Ancient Garden (Plants are new.)
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Vesuvius
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Predicate Logic Example

1. Pompeian(Marcus)

2. born(Marcus,40)

3. man(Marcus)

4. ∀x man(x) ⇒ mortal(x)

5. ∀x Pompeian(x) ⇒ died(x,79)
6. erupted(Vesuvius,79)

7. ∀x ∀t1 ∀t2 mortal(x) ∧ born(x,t1) ∧ gt(t2-
t1,150)⇒ dead(x,t2)
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Dead Guy in 2009

8. gt(now,79)
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Some Rules of Inference

9. ∀x ∀t  [alive(x,t) ⇒¬dead(x,t)] ∧
[¬dead(x,t) ⇒ alive(x,t)]

If x is alive at time t, he’s not dead at time t, and vice versa.

10. ∀x ∀t1 ∀t2 died(x,t1) ∧ gt(t2,t1) ⇒ dead(x,t2)

If  x died at time t1 and t2 is later, x is still dead at t2.
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Prove dead(Marcus,now)

1. Pompeian(Marcus)

2. born(Marcus,40)

3. man(Marcus)

4. ∀x man(x) ⇒ mortal(x)

5. ∀x Pompeian(x) ⇒ died(x,79)

6. erupted(Vesuvius,79)

7. ∀x ∀t1 ∀t2 mortal(x) ∧ born(x,t1) ∧ gt(t2-t1,150)⇒ dead(x,t2)
8. gt(now,79)

9. ∀x ∀t  [alive(x,t) ⇒¬dead(x,t)] ∧ [¬dead(x,t) ⇒ alive(x,t)]

10.∀x ∀t1 ∀t2 died(x,t1) ∧ gt(t2,t1) ⇒ dead(x,t2)
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Prove dead(Marcus,now)
Direct Proof

1. Pompeian(Marcus)

5. ∀x Pompeian(x) ⇒ died(x,79)

8. gt(now,79)

7. ∀x ∀t1 ∀t2 died(x,t1) ∧ gt(t2,t1) ⇒ dead(x,t2)

died(Marcus,79)

died(Marcus,79) ∧ gt(now,79)

dead(Marcus,now)
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Proof by Contradiction
¬ dead(Marcus,now)

∀x ∀t1 ∀t2 died(x,t1) ∧ gt(t2,t1) ⇒ dead(x,t2)

∀t1 ¬ [died(Marcus,t1) ∧ gt(now,t1)]

What substitutions were made here?
What rule of inference was used?

Marcus for x; now for t2

If x ⇒ y then  ¬y ⇒ ¬x

15



Proof by Contradiction
¬ dead(Marcus,now)

∀x ∀t1 ∀t2 died(x,t1) ∧ gt(t2,t1) ⇒ dead(x,t2)

∀t1 ¬ [died(Marcus,t1) ∧ gt(now,t1)] 
∀t1 ¬ died(Marcus,t1) ∨ ¬ gt(now,t1)

died(Marcus,79)*

¬ gt(now,79)                              gt(now,79)

*assume we proved this separately

contradiction
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Resolution Theorem Provers
for Predicate Logic

• Given:
– F: a set of axioms represented as formulas

– S: a conjecture represented as a formula

• Prove:  F logically implies S

• Technique
– Construct ¬S, the negated conjecture

– Show that F’ = F ∪ {¬S} leads to a contradiction

– Conclude: ¬{¬S}  or  S
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Part I: Preprocessing to express
in Conjunctive Normal Form

1. Eliminate implication operator ⇒
• Replace A ⇒ B by ∨(¬ A,B)

• Example:

man(x) ⇒ mortal(x) is replaced by

∨(¬ man(x),mortal(x)) or in infix notation

¬ man(x) ∨ mortal(x)

18



Preprocessing Continued

2. Reduce the scope of each ¬ to apply to at 
most one predicate by applying rules:

• Demorgan’s Laws
¬ ∨(x1,…,xn) is equivalent to ∧(¬x1,…, ¬xn)

¬ ∧(x1,…,xn) is equivalent to ∨(¬x1,…, ¬xn)

• ¬(¬x) ⇒ x

• ¬(∀x A) ⇒∃x(¬A)

• ¬(∃ x A) ⇒∀ x(¬A)

19



Preprocessing Continued

• Example
¬ [∀x ∀t1 ∀t2 [died(x,t1) ∧ gt(t2,t1)] ⇒ dead(x,t2)]
• Get rid of the implication

¬ [∀x ∀t1 ∀t2 ¬ [died(x,t1) ∧ gt(t2,t1)]∨dead(x,t2)]

• Apply the rule for ¬[∀
∃x ∃t1 ∃t2 ¬( ¬ [died(x,t1) ∧ gt(t2,t1)] ∨ dead(x,t2))
• Apply DeMorgan’s Law

∃x ∃t1 ∃t2 ¬ ¬ [died(x,t1) ∧ gt(t2,t1)] ∧ ¬ dead(x,t2)

∃x ∃t1 ∃t2 died(x,t1) ∧ gt(t2,t1) ∧ ¬ dead(x,t2)]
20



Preprocessing Continued

3. Standardize Variables

Rename variables so that each quantifier binds a 
unique variable

∀x [P(x) ∧ ∃x Q(x)]
becomes

∀x [P(x) ∧ ∃y Q(y)]
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Preprocessing Continued

• 4. Eliminate existential qualifiers by 
introducing Skolem functions.

• Example

∀x ∀y ∃z P(x,y,z)
• The variable z depends on x and y.

• So z is a function of x and y. 

• We choose an arbitrary function name, say f, 
and replace z by f(x,y), eliminating the ∃.

∀x ∀y P(x,y,f(x,y)) 
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Preprocessing Continued

5. Rewrite the result in Conjunctive Normal 
Form (CNF)

∧ (x1,…,xn) where the xi can be

• atomic formulas  A(x)

• negated atomic formulas ¬ A(x)

• disjunctions A(x) ∨ P(y)
This uses the rule

∨(x1, ∧(x2, … , xn) = ∧(∨(x1,x2), … , ∨(x1,xn))
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Preprocessing Continued

6. Since all the variables are now only universally 
quantified, eliminate the ∀ as understood.

∀x ∀t1 ∀t2 ¬died(x,t1) ∨ ¬ gt(t2,t1) 
∨dead(x,t2)

becomes

¬died(x,t1) ∨ ¬ gt(t2,t1) ∨ dead(x,t2)
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Clause Form

• The clause form of a set of original formulas 
consists of a set of clauses as follows.
– A literal is an atom or negation of atom.

– A clause is a disjunction of literals.

– A formula is a conjunction of clauses.

• Example

Clause 1:  {A(x), ¬P(g(x,y),z), ¬R(z)}  (implicit or)
Clause 2:  {C(x,y), Q(x,y,z)}    (another implicit or)
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Steps in Proving a Conjecture
1. Given a set of axioms F and a conjecture S, 

let F’ = F ∪ ¬S and find the clause form C of 
F’.

2. Iteratively try to find new clauses that are 
logically implied by C.

3. If NIL is one of these clauses you produce, 
then F’ is unsatisfiable and the conjecture is 
proved.

4. You get NIL when you produce something 
that has A and also has ¬A.
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Resolution Procedure

1. Convert F to clause form: a set of clauses.

2. Negate S, convert it to clause form, and add it 
to your set of clauses.

3. Repeat until a contradiction or no progress
a.  Select two parent clauses.

b.  Produce their resolvent.

c.   If the resolvent = NIL, we are done.

d.  Else add the resolvent to the set of clauses.

27



Resolution for Propositions

• Let C1 = L1 ∨ L2 ∨ … ∨ Ln

• Let C2 = L1’ ∨ L2’ ∨ … ∨ Ln’
• If C1 has a literal L and C2 has the opposite 

literal ¬L, they cancel each other and produce
resolvent(C1,C2) = 

L1 ∨ L2 ∨ … ∨ Ln ∨ L1’ ∨ L2’ ∨ … ∨ Ln’

with both L and ¬L removed
• If no 2 literals cancel, nothing is removed
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Propositional Logic Example

Formulas: P ∨ Q, P ⇒ Q, Q ⇒ R
Conjecture: R

Negation of conjecture: ¬R

Clauses: {P ∨ Q, ¬P ∨ Q, ¬Q ∨ R, ¬R}

Resolvent(P ∨ Q, ¬P ∨ Q) is Q. Add Q to clauses.

Resolvent(¬Q ∨ R, ¬R) is ¬Q. Add ¬Q to clauses.

Resolvent(Q, ¬Q) is NIL.
The conjecture is proved. 
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Refutation Graph

Original Clauses: {P ∨ Q, ¬P ∨ Q, ¬Q ∨ R, ¬R}

P ∨ Q        ¬P ∨ Q             ¬Q ∨ R             ¬R                

Q                                         ¬Q

NIL
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Exercise

• Given P ⇒ R and R ⇒ Q, prove that P ⇒ Q
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Resolution for Predicates
• Requires a matching procedure that compares 2 

literals and determines whether there is a set of 
substitutions that makes them identical.

• This procedure is called unification.

C1 = eats(Tom x)
C2 = eats(Tom, ice cream)

• The substituion ice cream/x (read “ice cream for x”) 
makes C1 = C2.

• You can substitute constants for variables and 
variables for variables, but nothing for constants.
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Proof Using Unification
• Given ∀x P(x) ⇒ R(x) {¬P(x),R(x)}

∀z R(z) ⇒ Q(z) {¬R(z),Q(z)}

• Prove ∀x P(x) ⇒ Q(x)

• Negation ¬ ∀x P(x) ⇒ Q(x)

• ∃x ¬(P(x) ⇒ Q(x))

• ∃x ¬ (¬P(x) ∨ Q(x))

• ∃x P(x) ∧ ¬ Q(x)

• P(a) ∧ ¬ Q(a)* {P(a)}   {¬ Q(a)}

* Skolem function for a single variable is just a constant 33



Refutation Graph with Unification

{¬P(x),R(x)}                     {¬R(z),Q(z)}    
Substitution

x/z

{¬P(x),Q(x)}           {P(a)} 

Q(a)                ¬Q(a)

NIL

Substitution
a/x
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Another Pompeian Example

Prove: Marcus hates Caesar

1. man(Marcus)
2. Pompeian(Marcus)
3. ¬Pompeian(x1) ∨ Roman(x1)
4. ruler(Caesar)
5. ¬Roman(x2) ∨ loyalto(x2,Caesar) ∨ hate(x2,Caesar)
6. loyalto(x3,f1(x3))
7. ¬man(x4) ∨ ¬ruler(y1) ∨ ¬tryassissinate(x4,y1) ∨

¬loyalto(x4,y1)
8.   tryassissinate(Marcus,Caesar)
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Another Pompeian Example

5. If x2 is Roman and not loyal to Caesar then x2 hates Caesar.
6. For every x3, there is someone he is loyal to.
7. If x4 is a man and y1 is a ruler and x4 tries to assassinate x1 

then x4 is not loyal to y1.
8. Marcus tried to assassinate Caesar.

5. ¬Roman(x2) ∨ loyalto(x2,Caesar) ∨ hate(x2,Caesar)
6. loyalto(x3,f1(x3))
7. ¬man(x4) ∨ ¬ruler(y1) ∨ ¬tryassissinate(x4,y1) ∨

¬loyalto(x4,y1)
8. tryassissinate(Marcus,Caesar)
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Monkey Solution

• If we change the conjecture to {¬HB(s), HB(s)}
the result of the refutation becomes:

HB(grasp(climbbox(pushbox(c,s0)))
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