
1

Informed (Heuristic) Search

Idea: be smart
about what paths
to try.

2

Blind Search vs. Informed Search

• What’s the difference?

• How do we formally specify this?
A node is selected for expansion based on
an evaluation function that estimates cost
to goal.

3

General Tree Search Paradigm
function tree-search(root-node)

fringe  successors(root-node)
while (notempty(fringe))

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)
fringe  insert-all(successors(node),fringe) }

return failure
end tree-search

root-node

successors list

How do we order the successor list?

4

Best-First Search

• Use an evaluation function f(n) for node n.
• Always choose the node from fringe that

has the lowest f value.

3 5 1

4 6

5

Heuristics

• What is a heuristic?

• What are some examples of heuristics we
use?

• We’ll call the heuristic function h(n).

6

Greedy Best-First Search

• f(n) = h(n)

• What does that mean?

• What is it ignoring?

Romanian Route Finding

• Problem
– Initial State: Arad
– Goal State: Bucharest
– c(s,a,s´) is the length of the road from s to s´

• Heuristic function: h(s) = the straight line
distance from s to Bucharest

7

Original Road Map of Romania

8What’s the real shortest path from Arad to Bucharest?
What’s the distance on that path?

Greedy Search in Romania

9

140

99

211
Distance = 450

10

Greedy Best-First Search

• Is greedy search optimal?

• Is it complete?

• What is its worst-case complexity for a
tree search with branching factor b and
maximum depth m?
– time
– space

Greedy Best-First Search

• When would we use greedy best-first
search or greedy approaches in general?

11

12

A* Search
• Hart, Nilsson & Rafael 1968

– Best-first search with f(n) = g(n) + h(n)
where g(n) = sum of edge costs from start to n
and h(n) = estimate of lowest cost path n-->goal

– If h(n) is admissible then search will find optimal
solution.

{
Space bound since the queue must be maintained.

13

Back to Romaniastart

end

14

A* for Romanian Shortest Path

15

16

17

18

19

20

8 Puzzle Example

• f(n) = g(n) + h(n)
• What is the usual g(n)?
• two well-known h(n)’s

– h1 = the number of misplaced tiles
– h2 = the sum of the distances of the tiles from

their goal positions, using city block distance,
which is the sum of the horizontal and vertical
distances (Manhattan Distance)

21

8 Puzzle Using Number of
Misplaced Tiles

2 8 3
1 6 4
7 5

1 2 3
8 4
7 6 5
goal

g=0
h=4
f=4

2 8 3
1 4
7 6 5

2 8 3
1 6 4

7 5

2 8 3
1 4
7 6 5

22

Optimality of A* with Admissibility
(h never overestimates the cost to the goal)

Suppose a suboptimal goal G2 has been generated and
is in the queue. Let n be an unexpanded node on the
shortest path to an optimal goal G1.

G1

n

G2

f(n) = g(n) + h(n)
< g(G1) Why?
< g(G2) G2 is suboptimal
= f(G2) f(G2) = g(G2)

So f(n) < f(G2) and A* will never select
G2 for expansion.

Optimality of A* with
Consistency (stronger condition)

• h(n) is consistent if
– for every node n
– for every successor n´ due to legal action a
– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also
admissible.

23

n

n´ G
c(n,a,n´)

h(n´)

h(n)

24

Algorithms for A*
• Since Nillsson defined A* search, many different

authors have suggested algorithms.

• Using Tree-Search, the optimality argument
holds, but you search too many states.

• Using Graph-Search, it can break down,
because an optimal path to a repeated state can
be discarded if it is not the first one found.

• One way to solve the problem is that whenever
you come to a repeated node, discard the longer
path to it.

25

The Rich/Knight Implementation
• a node consists of

– state
– g, h, f values
– list of successors
– pointer to parent

• OPEN is the list of nodes that have been generated and
had h applied, but not expanded and can be
implemented as a priority queue.

• CLOSED is the list of nodes that have already been
expanded.

26

Rich/Knight
1) /* Initialization */

OPEN <- start node

Initialize the start node
g:
h:
f:

CLOSED <- empty list

27

Rich/Knight

2) repeat until goal (or time limit or space limit)

• if OPEN is empty, fail
• BESTNODE <- node on OPEN with lowest f
• if BESTNODE is a goal, exit and succeed
• remove BESTNODE from OPEN and add it to

CLOSED
• generate successors of BESTNODE

28

Rich/Knight

for each successor s do
1. set its parent field
2. compute g(s)
3. if there is a node OLD on OPEN with
the same state info as s

{ add OLD to successors(BESTNODE)
if g(s) < g(OLD), update OLD and

throw out s }

29

Rich/Knight/Tanimoto
4. if (s is not on OPEN and there is a node

OLD on CLOSED with the same state info
as s

{ add OLD to successors(BESTNODE)
if g(s) < g(OLD), update OLD,

remove it from CLOSED
and put it on OPEN, throw out s

}

30

Rich/Knight

5. If s was not on OPEN or CLOSED
{ add s to OPEN
add s to successors(BESTNODE)
calculate g(s), h(s), f(s) }

end of repeat loop

31

The Heuristic Function h
• If h is a perfect estimator of the true cost then A* will

always pick the correct successor with no search.

• If h is admissible, A* with TREE-SEARCH is guaranteed
to give the optimal solution.

• If h is consistent, too, then GRAPH-SEARCH is optimal.

• If h is not admissable, no guarantees, but it can work
well if h is not often greater than the true cost.

Complexity of A*
• Time complexity is exponential in the length of

the solution path unless for “true” distance h*
|h(n) – h*(n)| < O(log h*(n))
which we can’t guarantee.

• But, this is AI, computers are fast, and a good
heuristic helps a lot.

• Space complexity is also exponential, because it
keeps all generated nodes in memory.

Big Theta notation says 2 functions have about the same growth rate.

Why not always use A*?

• Pros

• Cons

Solving the Memory Problem

• Iterative Deepening A*

• Recursive Best-First Search

• Depth-First Branch-and-Bound

• Simplified Memory-Bounded A*

Iterative-Deepening A*
• Like iterative-deepening depth-first, but...
• Depth bound modified to be an f-limit

– Start with f-limit = h(start)
– Prune any node if f(node) > f-limit
– Next f-limit=min-cost of any node pruned

a

b

c

d

e

f
FL=15

FL=21

Recursive Best-First Search
• Use a variable called f-limit to keep track of the

best alternative path available from any ancestor
of the current node

• If f(current node) > f-limit, back up to try that
alternative path

• As the recursion unwinds, replace the f-value of
each node along the path with the backed-up
value: the best f-value of its children

Simplified Memory-Bounded A*

• Works like A* until memory is full

• When memory is full, drop the leaf node with the
highest f-value (the worst leaf), keeping track of
that worst value in the parent

• Complete if any solution is reachable
• Optimal if any optimal solution is reachable
• Otherwise, returns the best reachable solution

39

Performance of Heuristics

• How do we evaluate a heuristic function?
• effective branching factor b*

– If A* using h finds a solution at depth d using
N nodes, then the effective branching factor is
b* where N = 1 + b* + (b*)2 + . . . + (b*)d

• Example: depth 0
d=2 depth 1
b=3 depth 2

40

Table of Effective Branching Factors

b d N
2 2 7
2 5 63
3 2 13
3 5 364
3 10 88573
6 2 43
6 5 9331
6 10 72,559,411

How might we use this idea to evaluate a heuristic?

Generate Admissible Heuristics
from Relaxed Problems

• A relaxed problem has fewer constraints.

• Search graph is a superset of the one for
the original problem. (more legal actions)

• The cost of an optimal solution to a
relaxed problem is an admissible heuristic
for the original problem. (Why?)

41

Example from Text

42

2 8 3
1 6 4
7 5

2 8 3
1 4
7 5 6

Initial (a) (b) (c)

2 3
1 6 4
7 5 8

2 8 3
4 6 1
7 5

Generate Admissible Heuristics
from Subproblems

• A subproblem may be much easier to solve.

• There can be pattern databases for particular
problems that store the exact costs for solutions
to all subproblem instances (if they are small
enough).

• The cost of solving a subproblem is not greater
than the cost of solving the full problem.

43

Still may not succeed

• In spite of the use of heuristics and various
smart search algorithms, not all problems
can be solved.

• Some search spaces are just too big for a
classical search.

• So we have to look at other kinds of tools.
44

	Informed (Heuristic) Search
	Blind Search vs. Informed Search
	General Tree Search Paradigm
	Best-First Search
	Heuristics
	Greedy Best-First Search
	Romanian Route Finding
	Original Road Map of Romania
	Greedy Search in Romania
	Greedy Best-First Search
	Greedy Best-First Search
	A* Search
	Back to Romania
	A* for 	Romanian Shortest Path
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	8 Puzzle Example
	8 Puzzle Using Number of Misplaced Tiles
	Optimality of A* with Admissibility �(h never overestimates the cost to the goal)
	Optimality of A* with� Consistency (stronger condition)
	Algorithms for A*
	The Rich/Knight Implementation
	Rich/Knight
	Rich/Knight
	Rich/Knight
	Rich/Knight/Tanimoto
	Rich/Knight
	The Heuristic Function h
	Complexity of A*
	Why not always use A*?
	Solving the Memory Problem
	Iterative-Deepening A*
	Recursive Best-First Search
	Simplified Memory-Bounded A*
	Performance of Heuristics
	Table of Effective Branching Factors
	Generate Admissible Heuristics from Relaxed Problems
	Example from Text
	Generate Admissible Heuristics from Subproblems
	Still may not succeed

