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CSE 473 
Artificial Intelligence

Review

Logistics

• Project due tonight

• Exam next Mon 2:30—4:20
 Regular classroom
 Closed book
 Cover all quarter’s material
 Emphasis on material not covered on midterm

Defining AI 

thought 
vs. 

behavior

human-like  vs. rational

Systems that 
think like humans

Systems that 
think rationally

Systems that act 
like humans

Systems that act 
rationally

Goals of this Course

• To introduce you to a set of key: 
 Paradigms & 
 Techniques 

• Teach you to identify when & how to use
 Heuristic search
 Constraint satisfaction
 Planning
 Logical inference
 Bayesian inference
 Policy construction
 Machine learning
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Theme I

• Problem Spaces & Search

Learning as Search

• Decision trees

• Structure learning in Bayesian networks

• Unsupervised clustering

• Boosting

Theme II

• In the knowledge lies the power

• Adding knowledge to search

Heuristics

• How to generate?

• Admissibility?
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Propositional Logic vs. First Order

Ontology

Syntax

Semantics

Inference
Algorithm

Complexity

Objects, 
Properties, 
Relations

Atomic sentences

Connectives

Variables & quantification
Sentences have structure: terms
father-of(mother-of(X)))

Unification
Forward, Backward chaining 
Resolution, theorem proving

DPLL, WalkSAT
Fast in practice

Semi-decidableNP-Complete

Facts (P, Q)

Interpretations 
(Much more complicated)Truth Tables
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Planning

 Problem solving algorithms that operate on explicit 
propositional representations of states and actions.

 Make use of specific heuristics.
 State-space search: forward (progression) / 

backward (regression) search
 Partial order planners search space of plans from 

goal to start, adding actions to achieve goals
 GraphPlan: Generates planning graph to guide 

backwards search for plan
 SATplan: Converts planning problem into 

propositional axioms. Uses SAT solver to find plan.

Probabilistic Representations

• How encode knowledge here?

Uncertainity
• Joint Distribution
• Prior & Conditional Probability
• Bayes Rule
• [Conditional] Independence
• Bayes Net 

 Propositional
 Hot topic: extensions to FOL

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)

e,b    0.9 (0.1)

e,b    0.2 (0.8)

e,b    0.85 (0.15)

e,b    0.01 (0.99)                 

Radio
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = P(b,j,m,e,a)
e,a
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)
e              a

Localization as Dynamic Bayes Net
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Representations for Bayesian Robot 
Localization

Discrete approaches (’95)
• Topological representation (’95)

• uncertainty handling (POMDPs)

• occas. global localization, recovery

• Grid-based, metric representation (’96)

• global localization, recovery

Multi-hypothesis (’00)
• multiple Kalman filters

• global localization, recovery

Particle filters (’99)
• sample-based representation

• global localization, recovery

Kalman filters (late-80s?)
• Gaussians

• approximately linear models

• position tracking

AI

Robotics

Sensor board: Data Stream

Courtesy G. Borriello

Example Evaluation Run

Decision stumps classifiers (at 4Hz)

HMM with probabilities as inputs (using a 15 second sliding window with 5 second overlap)

Ground truth for a continuous hour and half segment of data.

Specifying an MDP
S = set of states set   (|S| = n)

A = set of actions  (|A| = m)

Pr = transition function Pr(s,a,s’)
represented by set of m n x n stochastic 
matrices 

each defines a distribution over SxS

R(s) = bounded, real-valued reward fun
represented by an n-vector
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Max

Bellman Backup, Value Iteration

a1

a2

a3

s

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Qn+1(s,a)

Vn+1(s)
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Stochastic, Fully Observable
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Why is Learning Possible?

Experience alone never justifies any 
conclusion about any unseen instance.

Learning occurs when 
PREJUDICE meets DATA!
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Inductive learning method

• Construct/adjust h to agree with f on training set 
(h is consistent if it agrees with f on all examples)

•
• E.g., curve fitting:

• Ockham’s razor: prefer the simplest hypothesis consistent 
with data

•
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Decision Tree Overfitting

Number of Nodes in Decision tree

Accuracy

0.9

0.8

0.7

0.6

On training data

On test data
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ANEMIA DATA WITH LABELS

Anemia Group

Control Group

And More

• Specific search & CSP algorithms

• Adversary Search

• Inference in Propositional & FO Logic

• Learning: decision trees, boosting, EM, RL

• Lots of details


