Logistics

CSE 473 Artificial Intelligence

Review

Project due tonight

Exam next Mon 2:30—4:20
 Regular classroom
 Closed book
 Cover all quarter's material
 Emphasis on material not covered on midterm

Defining AI

human-like vs. rational

	Systems that think like humans	
	Systems that act like humans	Systems that act rationally

Goals of this Course

- To introduce you to a set of key: Paradigms & Techniques
- Teach you to identify when & how to use Heuristic search Constraint satisfaction Planning Logical inference Bayesian inference Policy construction Machine learning

Theme I

• Problem Spaces & Search

How to specify PS? Two kinds of search?

Learning as Search

- Decision trees
- Structure learning in Bayesian networks
- Unsupervised clustering
- Boosting

Theme II

- In the knowledge lies the power
- Adding knowledge to search

Heuristics

- How to generate?
- Admissibility?

Propositional Logic vs. First Order

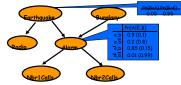
Ontology	Facts (P, Q)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables & quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, WalkSA Fast in practice	Unification Forward, Backward chaining Resolution, theorem proving
Complexity	NP-Complete	Semi-decidable

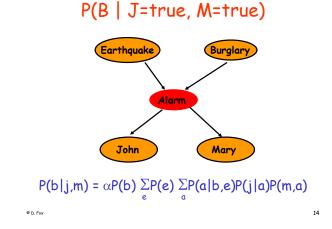
Planning

- Problem solving algorithms that operate on explicit propositional representations of states and actions.
- Make use of specific heuristics.
- State-space search: forward (progression) / backward (regression) search
- Partial order planners search space of plans from goal to start, adding actions to achieve goals
- GraphPlan: Generates planning graph to guide backwards search for plan
- SATplan: Converts planning problem into propositional axioms. Uses SAT solver to find plan.

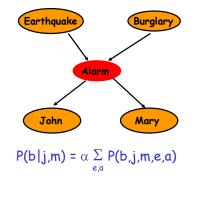
10

@ D. Fox

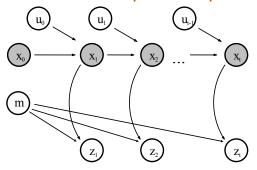

Probabilistic Representations

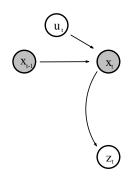

· How encode knowledge here?

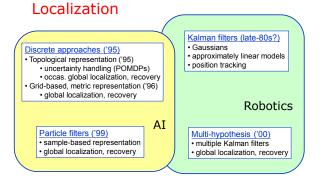
In the knowledge lies the power


Uncertainity

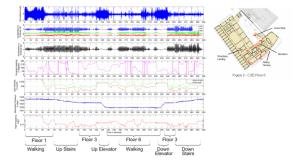
- Joint Distribution
- Prior & Conditional Probability
- Bayes Rule
- [Conditional] Independence
- Bayes Net Propositional Hot topic: extensions to FOL

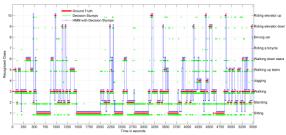

P(B | J=true, M=true)


13


@ D. Fox

Localization as Dynamic Bayes Net


Markov Assumption Helps!


Representations for Bayesian Robot

Sensor board: Data Stream

Courtesy G. Borriello

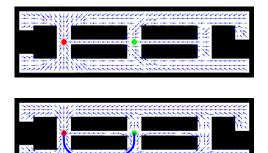
Example Evaluation Run

Decision stumps classifiers (at 4Hz)

HMM with probabilities as inputs (using a 15 second sliding window with 5 second overlap) Ground truth for a continuous hour and half segment of data. S = set of states set (|S| = n)

A = set of actions (|A| = m)

Pr = transition function Pr(s,a,s') represented by set of m n x n stochastic matrices


each defines a distribution over SxS

R(s) = bounded, real-valued reward fun represented by an n-vector

Bellman Backup, Value Iteration

Stochastic, Fully Observable

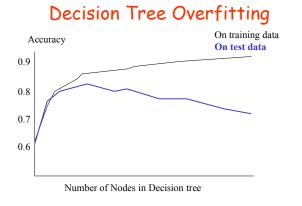
@ D. Fox

Why is Learning Possible?

Experience alone never justifies any conclusion about any unseen instance.

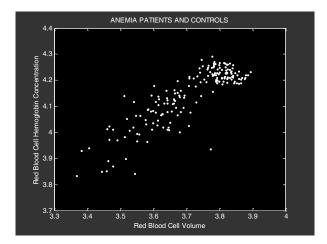
Learning occurs when PREJUDICE meets DATA!

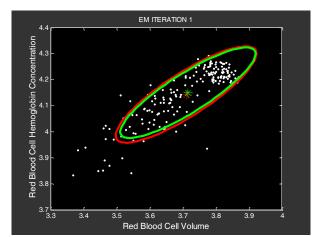
@ D. Fox

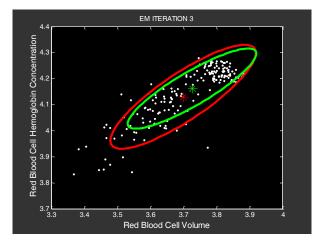

Inductive learning method

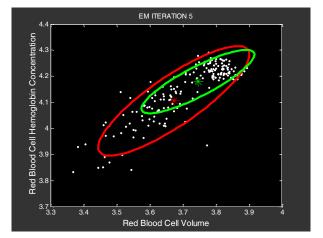
• Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)

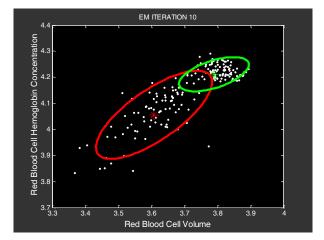
• E.g., curve fitting:

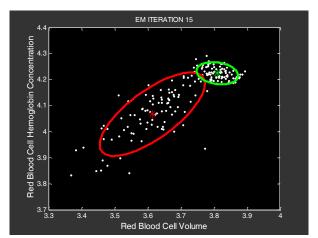


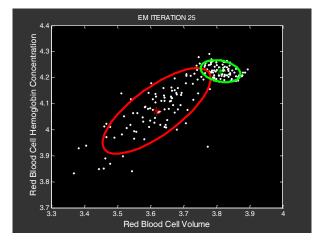

+ Ockham's razor: prefer the simplest hypothesis consistent $_{\circ \circ \text{-With data}}$

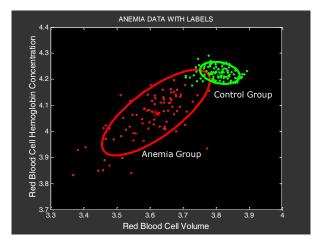



@ D. Fox









And More

- Specific search & CSP algorithms
- Adversary Search
- Inference in Propositional & FO Logic
- Learning: decision trees, boosting, EM, RL
- Lots of details