
1

© D. Weld and D. Fox 1

Reinforcement Learning

CSE 473

© D. Weld and D. Fox 2

Heli Flying

© D. Weld and D. Fox 3

Review: MDPs
S = set of states set (|S| = n)

A = set of actions (|A| = m)

Pr = transition function Pr(s,a,s‟)
represented by set of m n x n stochastic
matrices

each defines a distribution over SxS

R(s) = bounded, real-valued reward fun
represented by an n-vector

© D. Weld and D. Fox 4

Goal for an MDP

• Find a policy which:
 maximizes expected discounted reward
 over an infinite horizon
 for a fully observable
 Markov decision process.

2

© D. Weld and D. Fox 5

Max

Bellman Backup

a1

a2

a3

s

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Qn+1(s,a)

Vn+1(s)

Improve estimate of value function
Vt+1(s) = R(s) +

MaxaεA {c(a)+γΣs’εS Pr(s’|a,s) Vt(s’)}
Expected future reward
Aver’gd over dest states

© D. Weld and D. Fox 6

Value Iteration
• Assign arbitrary values to each state

 (or use an admissible heuristic).

• Iterate over all states
 Improving value funct via Bellman Backups

• Stop the iteration when converges
 (Vt approaches V* as t  )

• Dynamic Programming

© D. Weld and D. Fox 7

How is learning to act possible when…

• Actions have non-deterministic effects
 Which are initially unknown

• Rewards / punishments are infrequent
 Often at the end of long sequences of actions

• Learner must decide what actions to take

• World is large and complex

© D. Weld and D. Fox 8

Naïve Approach

1. Act Randomly for a while
 (Or systematically explore all possible actions)

2. Learn
 Transition function
 Reward function

3. Use value iteration, policy iteration, …

Problems?

3

© D. Weld and D. Fox 9

Example:
• Suppose given policy
• Want to determine how good it is

© D. Weld and D. Fox 10

Objective: Value Function

© D. Weld and D. Fox 11

Passive RL

• Given policy ,
 estimate U(s)

• Not given
 transition matrix, nor
 reward function!

• Epochs: training sequences

(1,1)(1,2)(1,3)(1,2)(1,3)(1,2)(1,1)(1,2)(2,2)(3,2) –1

(1,1)(1,2)(1,3)(2,3)(2,2)(2,3)(3,3) +1

(1,1)(1,2)(1,1)(1,2)(1,1)(2,1)(2,2)(2,3)(3,3) +1

(1,1)(1,2)(2,2)(1,2)(1,3)(2,3)(1,3)(2,3)(3,3) +1

(1,1)(2,1)(2,2)(2,1)(1,1)(1,2)(1,3)(2,3)(2,2)(3,2) -1

(1,1)(2,1)(1,1)(1,2)(2,2)(3,2) -1

© D. Weld and D. Fox 12

Approach 1

• Direct estimation
 Estimate U(s) as average total reward of epochs

containing s (calculating from s to end of epoch)
• Pros / Cons?

Requires huge amount of data
doesn‟t exploit Bellman constraints!

Expected utility of a state =
its own reward +

expected utility of successors

4

© D. Weld and D. Fox 13

Temporal Difference Learning

 Do backups on a per-action basis
 Don‟t try to estimate entire transition function!
 For each transition from s to s‟, update:

()()() () ()) (R s s UU s s sUU
  

   

=

 =

Learning rate

Discount rate

© D. Weld and D. Fox 14

Notes
• Once U is learned, updates become 0:

0 (() () ()) when () () ()R s U s U s U s R s U s
   

       

 Adjusts state to „agree‟ with observed successor
• Not all possible successors

 Doesn‟t require M, model of transition function

© D. Weld and D. Fox 15

Notes II

()()() () ()) (R s s UU s s sUU
  

   

• “TD(0)”
 One step lookahead

 Can do 2 step, 3 step…

© D. Weld and D. Fox 16

TD()
• Or, … take it to the limit!
• Compute weighted average of all future states

1
()()) (()(())

t t tt t
U sU s U s R s U s

  



 

1

0

() (1() ())))()((
t tt i

i

t

i

t
R s U sUU s s sU

  
  



 



   

becomes

weighted average

• Implementation
 Propagate current weighted TD onto past states
 Must memorize states visited from start of epoch

5

© D. Weld and D. Fox 17

Q-Learning

• Version of TD-learning where
 instead of learning value funct on states
 we learn funct on [state,action] pairs

• [Helpful for model-free policy learning]

() ()

(

()() ()

(,) (,)) (m ax (,)

()

be

(,))

com es

a

U s U s

Q a s

U sR s U s

R s Q as sa sa QQ

  











  

 



© D. Weld and D. Fox 18

Part II

• So far, we‟ve assumed agent had policy

• Now, suppose agent must learn it
 While acting in uncertain world

© D. Weld and D. Fox 19

Active Reinforcement Learning
Suppose agent must make policy while

learning

First approach:
Start with arbitrary policy
Apply Q-Learning
New policy:

In state s,
Choose action a that maximizes Q(a,s)

Problem?

© D. Weld and D. Fox 20

Utility of Exploration
• Too easily stuck in non-optimal space

 “Exploration versus exploitation tradeoff”

• Solution 1
 With fixed probability perform a random action

• Solution 2
 Increase est expected value of infrequent states

6

© D. Weld and D. Fox 21

~Worlds Best Player

• Neural network with 80 hidden units
 Used computed features

• 300,000 games against self

Imitation Learning

• What can you do if you have a teacher?
• People are often …

 … good at demonstrating a system
 … bad at specifying exact rewards / utilities

• Idea: Learn the reward function that best
“explains” demonstrated behavior

• That is, learn reward such that
demonstrated behavior is optimal wrt. It

• Also called apprenticeship learning, inverse
RL

© D. Weld and D. Fox 22

Data Collection

•Length
•Speed
•Road
Type

•Lanes

•Accidents
•Construction
•Congestion

•Time of day

•25 Taxi Drivers

•Over 100,000 miles

Courtesy of B. Ziebart

Destination Prediction
Courtesy of B. Ziebart

7

Heli Airshow
Courtesy of P. Abbeel

© D. Weld and D. Fox 26

Summary

• Use reinforcement learning when
 Model of world is unknown and/or rewards are delayed

• Temporal difference learning
 Simple and efficient training rule

• Q-learning eliminates need for explicit T model
• Large state spaces can (sometimes!) be handled

 Function approximation, using linear functions
 or neural nets

