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Reinforcement Learning

CSE 473
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Heli Flying
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Review: MDPs
S = set of states set   (|S| = n)

A = set of actions  (|A| = m)

Pr = transition function Pr(s,a,s‟)
represented by set of m n x n stochastic 
matrices

each defines a distribution over SxS

R(s) = bounded, real-valued reward fun
represented by an n-vector
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Goal for an MDP

• Find a policy which:
 maximizes  expected discounted reward
 over an infinite horizon
 for a fully observable
 Markov decision process.
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Bellman Backup
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Improve estimate of value function
Vt+1(s) = R(s) + 

MaxaεA {c(a)+γΣs’εS Pr(s’|a,s) Vt(s’)}
Expected future reward
Aver’gd over dest states 
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Value Iteration
• Assign arbitrary values to each state

 (or use an admissible heuristic).

• Iterate over all states 
 Improving value funct via Bellman Backups

• Stop the iteration when converges
 (Vt approaches V* as t  )

• Dynamic Programming
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How is learning to act possible when…

• Actions have non-deterministic effects
 Which are initially unknown

• Rewards / punishments are infrequent
 Often at the end of long sequences of actions

• Learner must decide what actions to take

• World is large and complex
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Naïve Approach

1. Act Randomly for a while
 (Or systematically explore all possible actions)

2. Learn 
 Transition function
 Reward function

3. Use value iteration, policy iteration, …

Problems?
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Example:
• Suppose given policy
• Want to determine how good it is
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Objective: Value Function
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Passive RL

• Given policy , 
 estimate U(s)

• Not given 
 transition matrix, nor 
 reward function!

• Epochs: training sequences

(1,1)(1,2)(1,3)(1,2)(1,3)(1,2)(1,1)(1,2)(2,2)(3,2) –1

(1,1)(1,2)(1,3)(2,3)(2,2)(2,3)(3,3) +1

(1,1)(1,2)(1,1)(1,2)(1,1)(2,1)(2,2)(2,3)(3,3) +1

(1,1)(1,2)(2,2)(1,2)(1,3)(2,3)(1,3)(2,3)(3,3) +1

(1,1)(2,1)(2,2)(2,1)(1,1)(1,2)(1,3)(2,3)(2,2)(3,2) -1

(1,1)(2,1)(1,1)(1,2)(2,2)(3,2) -1
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Approach 1

• Direct estimation
 Estimate U(s) as average total reward of epochs 

containing s (calculating from s to end of epoch)
• Pros / Cons?

Requires huge amount of data 
doesn‟t exploit Bellman constraints!

Expected utility of a state = 
its own reward + 

expected utility of successors
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Temporal Difference Learning 

 Do backups on a per-action basis
 Don‟t try to estimate entire transition function!
 For each transition from s to s‟, update:

( )( )( ) ( ) ( )) (R s s UU s s sUU
  

   

=

 = 

Learning rate

Discount rate

© D. Weld and D. Fox 14

Notes
• Once U is learned, updates become 0:

0 ( ( ) ( ) ( ))  when ( ) ( ) ( )R s U s U s U s R s U s
   

       

 Adjusts state to „agree‟ with observed successor
• Not all possible successors

 Doesn‟t require M, model of transition function
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Notes II

( )( )( ) ( ) ( )) (R s s UU s s sUU
  

   

• “TD(0)”
 One step lookahead

 Can do 2 step, 3 step…
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TD()
• Or, … take it to the limit!
• Compute weighted average of all future states

1
( )( )) (( )( ( ))

t t tt t
U sU s U s R s U s

  



 

1

0

( ) (1( ) ( ) ) ) )( )( (
t tt i

i

t

i

t
R s U sUU s s sU

  
  



 



   

becomes

weighted average

• Implementation
 Propagate current weighted TD onto past states
 Must memorize states visited from start of epoch



5

© D. Weld and D. Fox 17

Q-Learning

• Version of TD-learning where 
 instead of learning value funct on states
 we learn funct on [state,action] pairs

• [Helpful for model-free policy learning]

( ) ( )

(

( )( ) ( )
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Part II

• So far, we‟ve assumed agent had policy

• Now, suppose agent must learn it
 While acting in uncertain world
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Active Reinforcement Learning
Suppose agent must make policy while 

learning

First approach:
Start with arbitrary policy
Apply Q-Learning
New policy: 

In state s, 
Choose action a that maximizes Q(a,s)

Problem?
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Utility of Exploration
• Too easily stuck in non-optimal space

 “Exploration versus exploitation tradeoff”

• Solution 1
 With fixed probability perform a random action

• Solution 2
 Increase est expected value of infrequent states
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~Worlds Best Player

• Neural network with 80 hidden units
 Used computed features

• 300,000 games against self

Imitation Learning

• What can you do if you have a teacher?
• People are often …

 … good at demonstrating a system
 … bad at specifying exact rewards / utilities

• Idea: Learn the reward function that best 
“explains” demonstrated behavior

• That is, learn reward such that 
demonstrated behavior is optimal wrt. It

• Also called apprenticeship learning, inverse 
RL
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Data Collection

•Length
•Speed
•Road 
Type

•Lanes

•Accidents
•Construction
•Congestion

•Time of day

•25 Taxi Drivers

•Over 100,000 miles

Courtesy of B. Ziebart

Destination Prediction
Courtesy of B. Ziebart
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Heli Airshow
Courtesy of P. Abbeel
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Summary

• Use reinforcement learning when 
 Model of world is unknown and/or rewards are delayed

• Temporal difference learning 
 Simple and efficient training rule

• Q-learning eliminates need for explicit T model
• Large state spaces can (sometimes!) be handled

 Function approximation, using linear functions
 or neural nets


