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Machine Learning

Expectation Maximization and 
Gaussian Mixtures

CSE 473
Chapter 20.3

Feedback in Learning 

• Supervised learning: correct answers for 
each example

• Unsupervised learning: correct answers not 
given

• Reinforcement learning: occasional rewards

The problem of finding labels for unlabeled data

1x

2x

So far we have solved “supervised” classification problems where a teacher 
told us the label of each example.  In nature, items often do not come with 
labels.  How can we learn labels without a teacher?
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Labeled data

From Shadmehr & Diedrichsen

Example: image segmentation

Identify pixels that are white matter, gray matter, or outside of the brain.
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Raw Proximity Sensor Data

Measured distances for expected distance of 300 cm. 

Sonar Laser
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Fitting a Gaussian PDF to Data

• Suppose y = y1,…,yn,…,yN is a set of N
data values

• Given a Gaussian PDF p with mean  and 
variance , define:

• How do we choose  and  to maximise 
this probability?
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Maximum Likelihood Estimation

• Define the best fitting Gaussian to be 
the one such that p(y|,) is maximised.

• Terminology:
 p(y|,), thought of as a function of y is the 

probability (density) of y
 p(y|,), thought of as a function of , is 

the likelihood of ,
• Maximizing p(y|,) with respect to ,

is called Maximum Likelihood (ML)
estimation of ,

From Russell
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ML estimation of ,

• Intuitively:
 The maximum likelihood estimate of  should be

the average value of y1,…,yN, (the sample mean)
 The maximum likelihood estimate of  should be 

the variance of y1,…,yN. (the sample variance)

• This turns out to be true:  p(y| , ) is 
maximised by setting:
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If our data is not labeled, we can hypothesize that:

1. There are exactly m classes in the data:

2. Each class y occurs with a specific frequency:

3. Examples of class y are governed by a specific distribution:

According to our hypothesis, each example x(i) must have been generated 
from a specific “mixture” distribution:

We might hypothesize that the distributions are Gaussian:

Mixtures
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Learning of mixture models

Learning Mixtures from Data

Consider fixed K = 2

e.g., Unknown parameters Q = {1 , 1 , 2 , 2 , a1}

Given data D = {x1,…….xN}, we want to find the 

parameters Q that “best fit” the data

Early Attempts

Weldon’s data, 1893
- n=1000 crabs from Bay of Naples
- Ratio of forehead to body length
- Suspected existence of 2 separate species

Early Attempts

Karl Pearson, 1894:
- JRSS paper
- proposed a mixture of 2 Gaussians
- 5 parameters Q = {1 , 1 , 2 , 2 , a1}

- parameter estimation -> method of
moments

- involved solution of 9th order equations!

(see Chapter 10, Stigler (1986), The History of Statistics)
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“The solution of an equation of the ninth 
degree, where almost all powers, to the 
ninth, of the unknown quantity are 
existing, is, however, a very laborious 
task. Mr. Pearson has indeed possessed 
the energy to perform his heroic task…. 
But I fear he will have few 
successors…..”

Charlier 
(1906) 

Maximum Likelihood Principle

• Fisher, 1922
 assume a probabilistic model
 likelihood = p(data | parameters, model)
 find the parameters that make the data 

most likely

1977: The EM Algorithm

• Dempster, Laird, and Rubin
 General framework for likelihood-based 

parameter estimation with missing data 
• start with initial guesses of parameters
• E-step: estimate memberships given params
• M-step: estimate params given memberships
• Repeat until convergence

 Converges to a (local) maximum of likelihood
 E-step and M-step are often computationally 

simple
 Generalizes to maximum a posteriori (with 

priors)

© D.  Weld and D. Fox 24

EM for Mixture of Gaussians

• E-step: Compute probability that point 
xj was generated by component i:

• M-step: Compute new mean, covariance, 
and component weights:
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EM ITERATION 1
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EM ITERATION 3
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ANEMIA DATA WITH LABELS
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How can we determine the model parameters?

Raw Sensor Data

Measured distances for expected distance of 300 cm. 

Sonar Laser

Approximation Results

Sonar
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Hidden Variables

• But we can’t observe the disease variable
• Can’t we learn without it?

© Daniel S. Weld 38

We –could-
• But we’d get a fully-connected network

With 708 parameters (vs. 78)

 Much harder to learn!

© Daniel S. Weld 39

Chicken & Egg Problem

• If we knew that a training instance (patient) 
had the disease…
 It would be easy to learn P(symptom | disease)
 But we can’t observe disease, so we don’t.

If we knew params, e.g. P(symptom | disease) then it’d be easy 
to estimate if the patient had the disease. 

 But we don’t know 
 these parameters.

© Daniel S. Weld 40

Expectation Maximization (EM)
(high-level version)

• Pretend we do know the parameters
 Initialize randomly

• [E step] Compute probability of instance 
having each possible value of the hidden 
variable

[M step] Treating each instance as fractionally having both
values compute the new parameter values

Iterate until convergence!


