Machine Learning

Expectation Maximization and
Gaussian Mixtures

CSE 473
Chapter 20.3

The problem of finding labels for unlabeled data
So far we have solved “supervised" classification problems where a teacher

told us the label of each example. In nature,items often do not come with
labels. How can we learn labels without a teacher?

Unlabeled data Labeled data
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From Shadmehr & Diedrichsen

Feedback in Learning

* Supervised learning: correct answers for

each example

* Unsupervised learning: correct answers not

given

* Reinforcement learning: occasional rewards

Example: image segmentation

Identify pixels that are white matter, gray matter, or outside of the brain.

Outside the brain

Gray matter
White matter
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Pixel value (normalized)

From Shadmehr & Diedrichsen



ANEMIA PATIENTS AND CONTROLS

Raw Proximity Sensor Data

Measured distances for expected distance of 300 cm.
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Red Blood Cell Volume

Gaussians N Fitting a Gaussian PDF to Data

p(x)~ N(u,07):
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Fitting a Gaussian PDF to Data

- Suppose y = yy,...,¥,,...¥n is aset of N
data values

* Given a Gaussian PDF p with mean p and
variance o, define:

l(,\’,,wl)2

1 -

Hﬁa ’

+ How do we choose p and ¢ to maximise
this probability?

N
=1 p, l&.0)
n=1

p(yiu.o)

From Russell
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ML estimation of u,o

+ Intuitively:
The maximum likelihood estimate of u should be
the average value of y;,,...,yn, (the sample mean)

The maximum likelihood estimate of o should be

the variance of y;,...,yx (the sample variance)
- This turns out to be true: pyl u, o) is
maximised by setting:
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Maximum Likelihood Estimation

- Define the best fitting Gaussian to be
the one such that p(y|u,0) is maximised.
* Terminology:
p(ylu,0), thought of as a function of yis the
probability (density) of y
plylu,0), thought of as a function of u,ois
the likelihood of w0
* Maximizing p(ylu,o) with respect to u,o
is called Maximum Likelihood (ML)
estimation of 1o

From Russell
©D. Weldand D. Fox

Component 2

Component 1

Mixture Model
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Component 1 Component 2

Component Models

Mixture Model

Mixture Model

Mixtures Graphical Representation of
If our data is not labeled, we can hypothesize that: Ga ussia n M iXtu res
1. There are exactly m classes in the data: ye{li2, e, m)
2. Each class y occurs with a specific frequency: P(y) )
3. Examples of class y are governed by a specific distribution: p(x|y) Hidden variable P(y)

According to our hypothesis, each example x( must have been generated
from a specific “mixture” distribution:

plx|y) p(xly=1Lu,o) p(x|y=3u,0;)
P()=3P(y=i)p(xly=1/)

Measured variable p(x|y=2,u,0,)

We might hypothesize that the distributions are Gaussian:

Parameters of the distributions ¢ = (P (y=1)..% .. P(y=m).u,.5,}

pOI0)-Z pi - ¥ (sl 3 ) PE= 3 plr=Dpx |y =i u,0,)
. / . i=1

Mixing proportions  Normal distribution



Learning of mixture models

Early Attempts

Weldon's data, 1893

- n=1000 crabs from Bay of Naples

- Ratio of forehead to body length

- Suspected existence of 2 separate species

Learning Mixtures from Data

Consider fixed K = 2
e.g., Unknown parameters © = {y; , oy, 1, , 65 , o}

Given data D = {x;,......xx}, we want to find the
parameters ® that "best fit" the data

Early Attempts

Karl Pearson, 1894:
- JRSS paper
- proposed a mixture of 2 Gaussians
- B parameters © = {u; , o1, Uz, G2, 04}

- parameter estimation -> method of

moments
- involved solution of 9th order equations!

(saa Chapter 10, Stigler (1986), The History of S‘ra‘risTics)



“The solution of an equation of the ninth
degree, where almost all powers, to the
ninth, of the unknown quantity are
existing, is, however, a very laborious
task. Mr. Pearson has indeed possessed
the energy to perform his heroic task....
But I fear he will have few
successors....."

Charlier
(1906)

1977: The EM Algorithm

* Dempster, Laird, and Rubin

General framework for likelihood-based
parameter estimation with missing data

+ start with initial guesses of parameters

- E-step: estimate memberships given params

* M-step: estimate params given memberships

* Repeat until convergence
Converges to a (local) maximum of likelihood
E-step and M-step are often computationally
simple
Generalizes o maximum a posteriori (with
priors)

Maximum Likelihood Principle

* Fisher, 1922
assume a probabilistic model
likelihood = p(data | parameters, model)
find the parameters that make the data
most likely

EM for Mixture of Gaussians

- E-step: Compute probability that point
X; was generated by component i:
p, = P(C=ilx))
p,=a P(x,|C=i)P(C=i)
P=2p,

+ M-step: Compute new mean, covariance,
and component weights:
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EM ITERATION 1
Red Blood Cell Volume
EM ITERATION 5
Red Blood Cell Volume
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EM ITERATION 10 EM ITERATION 15

Red Blood Cell Hemoglobin Concentration
Red Blood Cell Hemoglobin Concentration
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EM ITERATION 25 LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS
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ANEMIA DATA WITH LABELS
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How can we determine the model parameters?
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Raw Sensor Data Approximation Results

Measured distances for expected distance of 300 cm.

\

L el

i

[l Freett V

ﬁ“ﬂﬂ“r‘fﬂgmkﬁx et

300cm 400cm




Hidden Variables

+ But we can't observe the disease variable
- Can't we learn without it?

Daniel 5. Weld 37

Chicken & Egg Problem

+ If we knew that a training instance (patient)
had the disease...
It would be easy to learn P(symptom | disease)
But we can't observe disease, so we don't.
If we knew params, e.g. P(symptom | disease) then it'd be easy
to estimate if the patient had the disease.
But we don't know
these parameters.

© Daniel 5. Weld 39

We -could-

* But we'd get a fully-connected network

With 708 parameters (vs. 78)
Much harder to learn!

© Daniel 5. Weld 38

Expectation Maximization (EM)
(high-level version)
* Pretend we do know the parameters
Initialize randomly
* [E step] Compute probability of instance
having each possible value of the hidden
variable

[M step] Treating each instance as fractionally having both
values compute the new parameter values

Tterate until convergencel

© Daniel 5. Weld 40
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