CSE 473

Ensemble Learning

Ensemble Learning

- Sometimes each learning technique yields a different hypothesis (or function)
- · But no perfect hypothesis...
- Could we combine several imperfect hypotheses to get a better hypothesis?

© CSE AI Faculty

Example

Combining 3 linear classifiers ⇒ More complex classifier

this line is one simple classifier saying that everything to the left is $\mbox{-}$ and everything to the right is -

© CSE AI Faculty

Ensemble Learning: Motivation

Analogies:

Elections combine voters' choices to pick a good candidate (hopefully)

Committees combine experts' opinions to make better decisions

Students working together on Othello project

Intuitions:

Individuals make mistakes but the "majority" may be less likely to

Individuals often have partial knowledge; a committee can pool expertise to make better decisions

© CSE AI Faculty

3

4

Technique 1: Bagging

· Combine hypotheses via majority voting

@ CSE AI Faculty

Bagging: Analysis

- Assumptions:
 - Each h, makes error with probability p
 - The hypotheses are independent
- · Majority voting of n hypotheses:
 - k hypotheses make an error: $\binom{n}{k} p^k (1-p)^{n-k}$
 - Majority makes an error: $\Sigma_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 - With n=5, p=0.1 → err(majority) < 0.01

Error probability went down from 0.1 to 0.01!

6

© CSE AI Faculty

5

Weighted Majority Voting

- In practice, hypotheses rarely independent
- Some hypotheses have less errors than others \Rightarrow all votes are not equal!
- Idea: Let's take a weighted majority

Technique 2: Boosting

- Most popular ensemble learning technique Computes a weighted majority of hypotheses Can "boost" performance of a "weak learner"
- Operates on a weighted training set Each training example (instance) has a "weight" Learning algorithm takes weight of input into account
- Idea: when an input is misclassified by a hypothesis, increase its weight so that the next hypothesis is more likely to classify it correctly

@ CSE AI Faculty

© CSE AI Faculty

7

Boosting Example with Decision Trees (DTs)

AdaBoost Algorithm (Adaptive Boosting) w: vector of N instance weights

z: vector of M hypoth. weights

- w_i ← 1/N ∀_i
- For m=1 to M do
- h_m ← learn(dataset,w)
- err ← 0
- For each (x_j, y_j) in dataset do \cdot If $h_m(x_j) \neq y_j$ then err \leftarrow err + w_j
- For each (x_j,y_j) in dataset do
- If $h_m(x_j) = y_j$ then $w_j \leftarrow w_j$ err / (1-err)
- w ← normalize(w)
- $z_m \leftarrow \log [(1-err) / err]$
- Return weighted-majority(h,z)

@ CSE AI Faculty

Original training set D1: Equal weights to all training inputs Goal: In round t, learn classifier h_t that minimizes error with respect to weighted training set

 h_t maps input to True (+1) or False (-1) $h_t: X \rightarrow \{-1, +1\}$

@ CSE AI Faculty

Taken from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire 11 AdaBoost Example

ROUND 1

© CSE AI Faculty

AdaBoost Example

AdaBoost Example

© CSE AI Faculty

AdaBoost Example

Example 1: Semantic Mapping

Motivation

Corridor Room Doorway

Human-Robot interaction:
User: "Go to the corridor"

Shape

Observations

Observations

Simple Features

Experiments

Application to a New Environment

Intel Research Lab in Seattle

Application to a New Environment

Training map

Intel Research Lab in Seattle

Example 2: Wearable Multi-Sensor Unit

• Records 4 hours of audio, images (1/sec), GPS, and sensor data (accelerometer, barometric pressure, light intensity, gyroscope, magnetometer)

© CSE AI Faculty

Data Stream

© CSE AI Faculty

Activity Recognition Model

·Accuracy: 88% activities, 93% environment

© CSE AI Faculty

© CSE AI Faculty

Boosting

- Extremely flexible framework
- · Handles high-dimensional continuous data
- Easy to implement

• Limitation:

Only models local classification problems