Machine Learning

Inductive Learning and Decision Trees

CSE 473

Why Learning?

- Learning is essential for unknown environments e.g., when designer lacks omniscience
- Learning is necessary in dynamic environments Agent can adapt to changes in environment not foreseen at design time
- Learning is useful as a system construction method
 Expose the agent to reality rather than trying to
- approximate it through equations etc.
 Learning modifies the agent's decision mechanisms to improve performance

© CSE AI Faculty

Types of Learning

- Supervised learning: correct answers for each input is provided
 - E.g., decision trees, backprop neural networks
- Unsupervised learning: correct answers not given, must discover patterns in input data
 - E.g., clustering, principal component analysis
- Reinforcement learning: occasional rewards (or punishments) given
 E.g., Q learning, MDPs

Inductive learning

A form of <u>Supervised Learning</u>: Learn a function from examples

f is the target function. Examples are pairs (x, f(x))

- Problem: learn a function ("hypothesis") hsuch that $h \approx f$ (h approximates f as best as possible) given a training set of examples
- (This is a highly simplified model of real learning: Ignores prior knowledge Assumes examples are given)

@ CSE AI Faculty

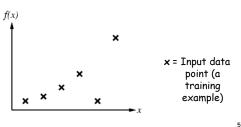
© CSE AI Faculty

3

4

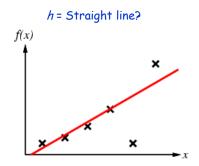
Inductive learning example

- Construct h to agree with f on training set h is consistent if it agrees with f on all training examples
- E.g., curve fitting (regression):



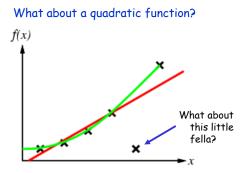
© CSE AI Faculty

Inductive learning example



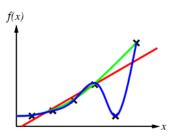
6

© CSE AI Faculty



Inductive learning example

Finally, a function that satisfies all!

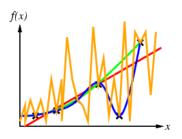


© CSE AI Faculty

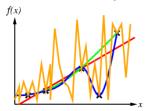
7 © CSE AI Faculty

Inductive learning example

But so does this one ...



Ockham's razor principle



Ockham's razor: prefer the simplest hypothesis consistent with data

Smooth blue function preferable over wiggly yellow one If noise known to exist in this data, even linear might be better (the lowest x might be due to noise)

10

9 © CSE AI Faculty

© CSE AI Faculty

Decision Trees

Input: Description of an object or a situation through a set of **attributes**.

Output: a decision, that is the predicted output value for the input.

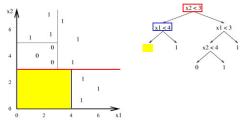
Both, input and output can be discrete or continuous.

Discrete-valued functions lead to classification problems.

Learning a continuous function is called regression.

Decision Tree Decision Boundaries

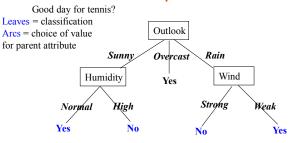
Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.



Experience: "Good day for tennis"

Day Outlook		Temp	Humid Wind		PlayTennis?
d1	s	h	h	W	n
d2	S	h	h	S	n
d3	0	h	h	W	у
d4	r	m	h	W	у
d5	r	c	n	W	у
d6	r	с	n	S	у
d7	0	c	n	s	у
d8	S	m	h	W	n
d9	S	с	n	W	у
d10	r	m	n	W	у
d11	S	m	n	S	у
d12	0	m	h	s	у
d13	0	h	n	W	у
d14	r	m	h	S	n

Decision Tree Representation



Decision tree is equivalent to logic in disjunctive normal form G-Day \Leftrightarrow (Sunny \land Normal) \lor Overcast \lor (Rain \land Weak)

14

© CSE AI Faculty

© CSE AI Faculty

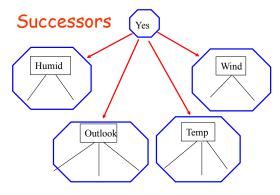
13

© CSE AI Faculty

What is the Day Outlook d1 s Humid Wind Play? Temp DT Learning as Search 123456789011234 011234 hhmcccmcmmn S W W W S S W W W S S W W S S W S S W S nyyyyynyyyyn Simplest Tree? SOTTTOSSTSOO hhhnnnhnnnhn Nodes **Decision Trees** Operators Tree Refinement: Sprouting the tree Initial node Smallest tree possible: a single leaf How good? Heuristic? **Information Gain** Means: · Goal? [10+, 4-] correct on 10 examples Best tree possible (???) incorrect on 4 examples

@ CSE AI Faculty

15

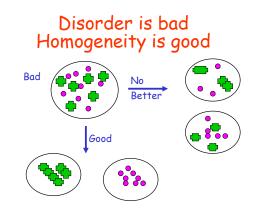


Which attribute should we use to split?

© CSE AI Foculty

To be decided:

- How to choose best attribute? Information gain Entropy (disorder)
- When to stop growing tree?



Using information theory to quantify uncertainty

- Entropy measures the amount of uncertainty in a probability distribution
- Entropy (or Information Content) of an answer to a question with possible answers $v_1, ..., v_n$:

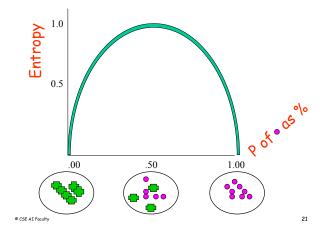
$$I(P(v_1), ..., P(v_n)) = \sum_{i=1} -P(v_i) \log_2 P(v_i)$$

© CSE AI Faculty

19 © CSE AI Faculty

17

@ CSE AT Faculty



Entropy (disorder) is bad Homogeneity is good

• Let S be a set of examples

@ CSE AT Faculty

- Entropy(S) = -P log₂(P) N log₂(N) where P is proportion of pos example and N is proportion of neg examples and 0 log 0 == 0
- Example: S has 10 pos and 4 neg Entropy([10+, 4-]) = -(10/14) log₂(10/14) -(4/14)log₂(4/14)
 = 0.863

22

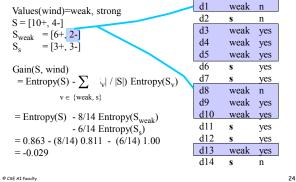
Information Gain

- Measure of expected reduction in entropy
- Resulting from splitting along an attribute

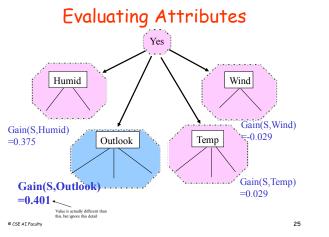
 $Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} S_v | / |S|) Entropy(S_v)$

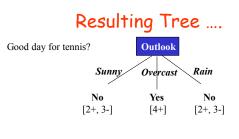
Where $Entropy(S) = -P \log_2(P) - N \log_2(N)$

Gain of Splitting on Wind Day Wind Tennis?



© CSE AI Faculty





© CSE AI Faculty

Recurse!

Day	Temp	Humid	Wind	Tennis?
d1	h	h	weak	n
d2	h	h	S	n
d8	m	h	weak	n
d9	с	n	weak	yes
d11	m	n	s	yes



© CSE AI Faculty

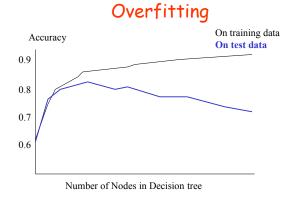
27 © CSE AI Faculty

Decision Tree Algorithm

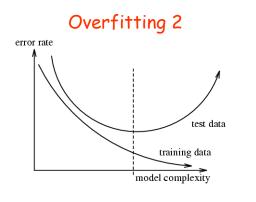
BuildTree(TrainingData) Split(TrainingData)

Split(D)

If (all points in D are of the same class) Then Return For each attribute A Evaluate splits on attribute A Use best split to partition D into D1, D2 Split (D1) Split (D2)



© CSE AI Faculty



Overfitting...

- DT is overfit when exists another DT' and DT has smaller error on training examples, but DT has bigger error on test examples
- Causes of overfitting Noisy data, or Training set is too small

© CSE AI Faculty

Figure from w.w.cohen

© CSE AI Faculty

31

@ CSE AI Faculty

29

32

Avoiding Overfitting

How can we avoid overfitting?

- Stop growing when data split not statistically significant
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

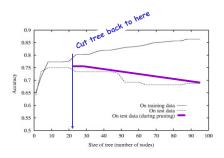
Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves *validation* set accuracy

Effect of Reduced-Error Pruning



Other Decision Tree Features

- Can handle continuous data Input: Use threshold to split Output: Estimate linear function at each leaf
- Can handle missing values Use expectation taken from other samples

© CSE AI Faculty