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Markov Decision Processes

CSE 473

Chapter 17

Problem Classes

• Deterministic vs. stochastic actions

• Full vs. partial observability

Deterministic, fully observable Stochastic, Fully Observable
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Stochastic, Partially Observable Sequential Decision Problem

• Beginning in the start state, agent must choose an action at 
each time step.

• Interaction with environment terminates if the agent reaches one 
of the goal states (4, 3) (reward of +1) or (4,1) (reward –1). Each 
other location has a reward of -.04.

• In each location the available actions are Up, Down, Left, Right.

Stochastic Actions

• Each action achieves the intended 
effect with probability 0.8, but the 
rest of the time, the agent moves at 
right angles to the intended direction. 
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Markov Decision Process (MDP)
Given a set of states in an accessible, stochastic 
environment, an MDP is defined by 

• Initial state S0

• Transition Model T(s,a,s’)

• Reward function R(s)

Transition model: T(s,a,s’) is the probability that 
state s’ is reached, if action a is executed in state s.

Policy: Complete mapping that specifies for each 
state s which action (s) to take.

Wanted: The optimal policy * that maximizes the 
expected utility.

Optimal Policies (1)

• Given the optimal policy, the agent uses its current 
percept that tells it its current state.

• It then executes the action *(s).

• We obtain a simple reflex agent that is computed 
from the information used for a utility-based agent.

Optimal policy for our 

MDP:

Optimal Policies (2)

R(s) -1.6248

-0.0221 < R(s) < 0

-0.4278 < R(s) < -0.085

0 < R(s)

How to compute optimal policies?

Horizon and Rewards

• Finite : Plan t steps into future. 
Reward = R(s0)+R(s1)+R(s2)+…+R(st)
Optimal action changes with time!

• Infinite : The agent never dies.

The reward R(s0)+R(s1)+R(s2)+… could be 
unbounded.
 Discounted reward : R(s0)+γR(s1)+ γ2R(s2)+… 

 Average reward : lim n∞ (1/n)[Σi R(si)]



4

Utilities of States

• The utility of a state depends on the utility of 
the state sequences that follow it.

• Let U (s) bet the utility of a state under policy .  

• Let st be the state of the agent after executing 
for t steps. Thus, the utility of s under is

• The true utility U(s) of a state is U *(s).

• R(s) is the short-term reward for being in s and 
U(s) is the long-term total reward from s 
onwards.
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Example

The utilities of the states with =1 and R(s)=-0.04 
for nonterminal states:

Choosing Actions using the Maximum Expected 
Utility Principle

The agent simply chooses the action that maximizes 
the expected utility of the subsequent state:

The utility of a state is the immediate reward for that 
state plus the expected discounted utility of the next 
state, assuming that the agent chooses the optimal 
action:
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Bellman-Equation

• The equation

is also called the Bellman-Equation.

• In our 4x3 world the equation for the state (1,1) is

U(1,1) = -0.04 + max{ 0.8 U(1,2) + 0.1 U(2,1) + 0.1 U(1,1), (Up)
0.9 U(1,1) + 0.1 U(1,2), (Left)
0.9 U(1,1) + 0.1 U(2,1), (Down)
0.8 U(2,1) + 0.1 U(1,2) + 0.1 U(1,1) } (Right)

Given the numbers for the utilities, Up is the 
optimal action in (1,1).
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Value Iteration

• The Bellman equation is the basis of value 
iteration.

• We can apply an iterative approach in which we 
replace the equality by an assignment:

• Update is called Bellman backup

• Stop the iteration appropriately. Vt approaches V* 
as t increases.
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Application Example

In practice the policy often becomes optimal 
before the utility has converged.

Value Iteration for Motion 
Planning

(assumes knowledge of robot’s location)
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Manipulator Control

Arm with two joints        Configuration space

Manipulator Control Path

State space            Configuration space

Manipulator Control Path

State space            Configuration space

Complexity of value iteration

• One iteration takes O(|A||S|2) time.

• Number of iterations required : 
poly(|S|,|A|,1/(1-γ))

• Overall, the algorithm is polynomial in state 
space, and thus exponential in number of 
state variables.
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Going beyond full observability

• In execution phase, we are uncertain 
where we are, but we have some idea of 
where we can be.

• A belief state = some idea of where we 
are (represented as a set of/probability 
distribution over the states).

Partial Observability

• Modelled as POMDPs. (partially observable 
MDPs). Also called Probabilistic Contingent 
Planning.

• Belief = probabilistic distribution over 
states. 

• What is the size of belief space?
• Output : Policy (Discretized Belief -> Action)
• Bellman Equation

V*(b)=maxaεA(b) [c(a)+ΣoεO P(b,a,o) V*(ba
o)]

Example Application POMDP for People Finding


