
1

Markov Decision Processes

CSE 473

Chapter 17

Problem Classes

• Deterministic vs. stochastic actions

• Full vs. partial observability

Deterministic, fully observable Stochastic, Fully Observable

2

Stochastic, Partially Observable Sequential Decision Problem

• Beginning in the start state, agent must choose an action at
each time step.

• Interaction with environment terminates if the agent reaches one
of the goal states (4, 3) (reward of +1) or (4,1) (reward –1). Each
other location has a reward of -.04.

• In each location the available actions are Up, Down, Left, Right.

Stochastic Actions

• Each action achieves the intended
effect with probability 0.8, but the
rest of the time, the agent moves at
right angles to the intended direction.

0.8

0.1 0.1

Markov Decision Process (MDP)

s2

s3

s4
s5

s1

0.7

0.3

0.9

0.1

0.3

0.3

0.4

0.99

0.01

0.2

0.8 r=-10

r=20

r=0

r=1

r=0

3

Markov Decision Process (MDP)
Given a set of states in an accessible, stochastic
environment, an MDP is defined by

• Initial state S0

• Transition Model T(s,a,s’)

• Reward function R(s)

Transition model: T(s,a,s’) is the probability that
state s’ is reached, if action a is executed in state s.

Policy: Complete mapping that specifies for each
state s which action (s) to take.

Wanted: The optimal policy * that maximizes the
expected utility.

Optimal Policies (1)

• Given the optimal policy, the agent uses its current
percept that tells it its current state.

• It then executes the action *(s).

• We obtain a simple reflex agent that is computed
from the information used for a utility-based agent.

Optimal policy for our

MDP:

Optimal Policies (2)

R(s) -1.6248

-0.0221 < R(s) < 0

-0.4278 < R(s) < -0.085

0 < R(s)

How to compute optimal policies?

Horizon and Rewards

• Finite : Plan t steps into future.
Reward = R(s0)+R(s1)+R(s2)+…+R(st)
Optimal action changes with time!

• Infinite : The agent never dies.

The reward R(s0)+R(s1)+R(s2)+… could be
unbounded.
 Discounted reward : R(s0)+γR(s1)+ γ2R(s2)+…

 Average reward : lim n∞ (1/n)[Σi R(si)]

4

Utilities of States

• The utility of a state depends on the utility of
the state sequences that follow it.

• Let U (s) bet the utility of a state under policy .

• Let st be the state of the agent after executing
for t steps. Thus, the utility of s under is

• The true utility U(s) of a state is U *(s).

• R(s) is the short-term reward for being in s and
U(s) is the long-term total reward from s
onwards.

0

0

t

t

t
ss,|)s(RE)s(U

Example

The utilities of the states with =1 and R(s)=-0.04
for nonterminal states:

Choosing Actions using the Maximum Expected
Utility Principle

The agent simply chooses the action that maximizes
the expected utility of the subsequent state:

The utility of a state is the immediate reward for that
state plus the expected discounted utility of the next
state, assuming that the agent chooses the optimal
action:

'

*
)'()',,(maxarg)(

sa

sUsasTs

'

)'()',,(max)()(

sa

sUsasTsRsU

Bellman-Equation

• The equation

is also called the Bellman-Equation.

• In our 4x3 world the equation for the state (1,1) is

U(1,1) = -0.04 + max{ 0.8 U(1,2) + 0.1 U(2,1) + 0.1 U(1,1), (Up)
0.9 U(1,1) + 0.1 U(1,2), (Left)
0.9 U(1,1) + 0.1 U(2,1), (Down)
0.8 U(2,1) + 0.1 U(1,2) + 0.1 U(1,1) } (Right)

Given the numbers for the utilities, Up is the
optimal action in (1,1).

'sa

)'s(U)'s,a,s(Tmax)s(R)s(U

5

Value Iteration

• The Bellman equation is the basis of value
iteration.

• We can apply an iterative approach in which we
replace the equality by an assignment:

• Update is called Bellman backup

• Stop the iteration appropriately. Vt approaches V*
as t increases.

's

i

a

i
)'s(U)'s,a,s(Tmax)s(R)s(U

1

Max

Bellman Backup

a1

a2

a3

s

Vn

Vn

Vn

Vn

Vn

Vn

Vn

Vn+1(s)

Application Example

In practice the policy often becomes optimal
before the utility has converged.

Value Iteration for Motion
Planning

(assumes knowledge of robot’s location)

6

Manipulator Control

Arm with two joints Configuration space

Manipulator Control Path

State space Configuration space

Manipulator Control Path

State space Configuration space

Complexity of value iteration

• One iteration takes O(|A||S|2) time.

• Number of iterations required :
poly(|S|,|A|,1/(1-γ))

• Overall, the algorithm is polynomial in state
space, and thus exponential in number of
state variables.

7

Going beyond full observability

• In execution phase, we are uncertain
where we are, but we have some idea of
where we can be.

• A belief state = some idea of where we
are (represented as a set of/probability
distribution over the states).

Partial Observability

• Modelled as POMDPs. (partially observable
MDPs). Also called Probabilistic Contingent
Planning.

• Belief = probabilistic distribution over
states.

• What is the size of belief space?
• Output : Policy (Discretized Belief -> Action)
• Bellman Equation

V*(b)=maxaεA(b) [c(a)+ΣoεO P(b,a,o) V*(ba
o)]

Example Application POMDP for People Finding

