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Bayesian Networks

CSE 473
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Bayes Nets

•In general, joint distribution P over set of 
variables (X1 x ... x Xn) requires exponential 
space for representation & inference

•BNs provide a graphical representation of 
conditional independence relations in P

 usually quite compact
 requires assessment of fewer parameters, those 

being quite natural (e.g., causal)
 efficient (usually) inference: query answering and 

belief update

© D. Weld and D. Fox 3

An Example Bayes Net

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)

e,b    0.9 (0.1)

e,b    0.2 (0.8)

e,b    0.85 (0.15)

e,b    0.01 (0.99)                 
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Earthquake Example 
(cont’d)

•If we know Alarm, no other evidence influences 
our degree of belief in Nbr1Calls

 P(N1|N2,A,E,B) = P(N1|A)
 also: P(N2|N1,A,E,B) = P(N2|A) and P(E|B) = P(E)

•By the chain rule we have
P(N1,N2,A,E,B) = P(N1|N2,A,E,B) ·P(N2|A,E,B)·

P(A|E,B) ·P(E|B) ·P(B)
= P(N1|A) ·P(N2|A) ·P(A|B,E) ·P(E) ·P(B)

•Full joint requires only 10 parameters (cf. 32)

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls
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BNs: Qualitative Structure

•Graphical structure of BN reflects 
conditional independence among variables

•Each variable X is a node in the DAG
•Edges denote direct probabilistic influence

 usually interpreted causally
 parents of X are denoted Par(X)

•X is conditionally independent of all 

nondescendents given its parents
 Graphical test exists for more general 

independence
 “Markov Blanket”
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Given Parents, X is Independent of 
Non-Descendants
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For Example

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls
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For Example

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls
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For Example

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Radio
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For Example

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Radio
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For Example

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Radio
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Given Markov Blanket, X is 
Independent of All Other Nodes

MB(X) = Par(X)  Childs(X)  Par(Childs(X))
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For Example

Earthquake Burglary

Alarm

Nbr2Calls

Radio

Nbr1Calls
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For Example

Earthquake Burglary

Alarm

Nbr2Calls

Radio

Nbr1Calls
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Conditional Probability Tables
•For complete spec. of joint dist., quantify BN

•For each variable X, specify CPT: P(X | Par(X))
 number of params locally exponential in |Par(X)|

•If X1, X2,... Xn is any topological sort of the 

network, then we are assured:
P(Xn,Xn-1,...X1) = P(Xn| Xn-1,...X1)·P(Xn-1 | Xn-2,… X1)

…  P(X2 | X1) · P(X1)

= P(Xn| Par(Xn)) · P(Xn-1 | Par(Xn-1)) … P(X1)
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• Suppose we choose the ordering M, J, A, B, E
•

P(J | M) = P(J)?

Bayes Net Construction Example
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• Suppose we choose the ordering M, J, A, B, E
•

P(J | M) = P(J)?
No
P(A | J, M) = P(A | J)? P(A | M)? P(A)?

Example
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• Suppose we choose the ordering M, J, A, B, E
•

P(J | M) = P(J)?
No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? 
P(B | A, J, M) = P(B)?

Example
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• Suppose we choose the ordering M, J, A, B, E
•

P(J | M) = P(J)?
No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)?
P(E | B, A, J, M) = P(E | A, B)?

Example
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• Suppose we choose the ordering M, J, A, B, E
•

P(J | M) = P(J)?
No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)? No
P(E | B, A, J, M) = P(E | A, B)? Yes

Example
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Example contd.

• Deciding conditional independence is hard in noncausal directions
•
• (Causal models and conditional independence seem hardwired for 

humans!)
•
• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
•
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Inference in BNs

•The graphical independence representation

 yields efficient inference schemes

•We generally want to compute 

 Pr(X), or 

 Pr(X|E) where E is (conjunctive) evidence

•Computations organized by network topology

•One simple algorithm: 

 variable elimination (VE)
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) =   P(b,j,m,e,a)
e,a
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P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)
e              a
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Structure of Computation

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)
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Variable Elimination

•A factor is a function from some set of 
variables into a specific value: e.g., f(E,A,N1)

 CPTs are factors, e.g., P(A|E,B) function of A,E,B

•VE works by eliminating all variables in turn 
until there is a factor with only query variable

•To eliminate a variable:
 join all factors containing that variable (like DB)
 sum out the influence of the variable on new 

factor
 exploits product form of joint distribution
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Example of VE: P(N1)

Earthqk Burgl

Alarm

N2N1

P(N1)

= N2,A,B,E P(N1,N2,A,B,E) 

= N2,A,B,E P(N1|A)P(N2|A) P(B)P(A|B,E)P(E)

= AP(N1|A) N2P(N2|A) BP(B) EP(A|B,E)P(E)

= AP(N1|A) N2P(N2|A) BP(B) f1(A,B)

= AP(N1|A) N2P(N2|A) f2(A)

= AP(N1|A) f3(A)

= f4(N1)
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Notes on VE
•Each operation is a simple multiplication of 
factors and summing out a variable

•Complexity determined by size of largest 
factor

 in our example, 3 vars (not 5)
 linear in number of vars, 
 exponential in largest factor elimination ordering 

greatly impacts factor size
 optimal elimination orderings: NP-hard
 heuristics, special structure (e.g., polytrees) 

•Practically, inference is much more tractable 
using structure of this sort


