Many Techniques Developed

* Fuzzy Logic

+ Certainty Factors

* Non-monotonic logic
* Probability

+ Only one has stood the test of timel

Aspects of Uncertainty

* Suppose you have a flight at 12 noon

* When should you leave for SEATAC
What are traffic conditions?

How crowded is security?

* Leaving 18 hours early may get you there
But ..?

Decision Theory =
Probability + Utility Theory

Min before hoon P(arrive-in-time)

20 min 0.05
30 min 0.25
45 min 0.50
60 min 0.75
120 min 0.98
1080 min 0.99

Depends on your preferences
Utility theory: representing & reasoning
about preferences




What Is Probability?

* Probability: Calculus for dealing with
nondeterminism and uncertainty

+ Cf. Logic

* Probabilistic model: Says how often we
expect different things to occur

+ Cf. Function

Why Should You Care?

* The world is full of uncertainty

Logic is not enough
Computers need to be able to handle uncertainty

* Probability: new foundation for AI (& CS!)

* Massive amounts of data around today

Statistics and CS are both about data
Statistics lets us summarize and understand it
Statistics is the basis for most learning

+ Statistics lets data do our work for us

Outline

* Basic notions

Atomic events, probabilities, joint distribution
Inference by enumeration

Independence & conditional independence
Bayes' rule

* Bayesian networks

+ Statistical learning

+ Dynamic Bayesian networks (DBNs)

* Markov decision processes (MDPs)

Logic vs. Probability

Symbol: Q, R ... Random variable: Q ...

Domain: you specify

Bool lues: T
oolean values: T, F e.g. {heads, tails} [1, 6]

State of the world: Atomic event: complete
Assignment to Q, R .. Z| specification of world: Q.. Z
*+ Mutually exclusive

+ Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

Joint distribution: Prob.
of every atomic event




Syntax for Propositions

Propositional or Boolean random variables
e.g., Cavity (do | have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of {sunny, rain, cloudy, snow)
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbeunded)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Axioms of Probability Theory

+ All probabilities between 0 and 1
0<P(A)¢1
P(true) =1
P(false) = 0.

* The probability of disjunction is:
P(AY B)= P(A)*T P(B)~ P(4N B)

AAB

True
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Prior Probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity =true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = (0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s
P(Weather, Cavily) = a 4 x 2 matrix of values:

Weather = ‘su-nny rain cloudy snow
Cavity=true |0.144 002 0.016 0.02
Cavity= false|0.576 0.08 0.064 0.08

Any question can be answered by the
joint distribution
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Conditional probability
Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8
i.e., given that toothacheis all T know

+ Notation for conditional distributions:
P(cavity| Toothache) = 2-element vector of 2-element vectors)

+ If we know more, e.g., cavity is also given, then we have
P(cavity| toothache,cavity) =1

+ New evidence may be irrelevant, allowing simplification:
P(cavity| toothache, sunny) = P(cavity | toothache)= 0.8

+ This kind of inference, sanctioned by domain knowledge, is
crucial

LW CSE AT Eoculty




Conditional Probability

 P(A| B)is the probability of A given B
+ Assumes that Bis the only info known.
+ Defined by:

P(AN B)
P(B)

P(4]8B)=

True

Dilemma at the Dentist's

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?

Inference by Enumeration

Start with the joint distribution:

toothache -1 toothache

catch| = eatch catch| = catch
.072] .008
144 | 576

For any proposition ¢, sum the atomic events where it is true:
P(¢) = Do P(w)

P(toothache)=.108+.012+.016+.064
=.20 or 20%

Inference by Enumeration

Start with the joint distribution:

toothache -1 toothache

catch| — catch

catch| = ecatch

For any proposition ¢, sum the atomic events where it is true:
P(¢) = Do P(w)

P(toothachevcavity) = .20 + .072 + .008
.28




Inference by Enumeration

Start with the joint distribution:

toothache - toothache

catch| = catch| catch| = catch
cavity | .108( .012 .072( .008
= cavity | .016 | .064 144 576

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
_ 0.016 + 0.064

= 0,108+ 0.012 + 0.016 + 0.064

P(—cavity|toothache)

Problems ??

+ Worst case time: O(d")

Where d = max arity

And n = number of random variables
+ Space complexity also O(d")

Size of joint distribution
+ How get O(d") entries for table??

Independence

* Aand Bare independent iff:

P(4|B)= P(4) These two constraints are

logically equivalent

P(B|4)=P(B)

* Therefore, if Aand B are independent:

P(ANB)

P(A|B)= = P(4)

P(ANB)= P(4)P(B)

Independence

A and B are independent iff

P(A|B)=P(A) or P(B|A)=P(B) o P(A,B)=P(A)P(B)
Cavity

decomposes into 4] 0othache Catch

P(Toothache, Catch, Cavily, Weather)

= P(Toothache, Catch, Cavity)P(Weather)

Cavity
Toothache Catch

Weather

32 entries reduced to 12; for n independent biased coins, 2" — n

Complete independence is powerful but rare

What to do if it doesn't hold?

LW CSE 4 Ly
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Conditional Independence

P(Toothache, Cavity, Catch) has 2* — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn’t depend
on whether | have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catch|toothache, —cavity) = P(cateh|—cavity)

Clateh is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Instead of 7 entries, only need 5
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Conditional Independence IT

P(catch | toothache, cavity) = P(catch | cavity)
P(catch | toothache,—cavity) = P(catch |—cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Cutch|Cavity)

Why only 5 entries in table?

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cuavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2+ 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

LW CSE AT Eoculiy
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Power of Cond. Independence

- Often, using conditional independence
reduces the storage complexity of the joint
distribution from exponential to linear!!

+ Conditional independence is the most basic &
robust form of knowledge about uncertain
environments.

Bayes Formula

P(x,y) = P(x[»)P(y) = P(y [ x)P(x)

=

_ P(y|x) P(x) _ likelihood
P(y)

" prior

P(x|y)

evidence
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Use to Compute Diagnostic
Probability from Causa/Probability
Ef fect|Cause) P(Cause)

P(Ef fect)

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001,

P(Cause|Ef fect) = L.

P(s) = 0.1,
P(S|M)= 0.8
P(MIS) = P(slm)P(m) _ 08 % 0.0001 _ o

P(s)

Note: posterior probability of meningitis still very small!

0.1

T Eaculiy
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Bayes' Rule & Cond. Independence

P(Cavity|toothache A catch)
= aP(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavily)

This is an example of a naive Bayes model:

P(Cause, Ef fecty, ..., Effect,) = P(Cause)[LP(Ef fect;|Cause)

A A B N

Total number of parameters is linear in n

Simple Example of State Estimation

+ Suppose a robot obtains measurement z
+ What is A(doorOpen/z)?

S

Causal vs. Diagnostic Reasoning

P(open/z) is diagnostic.

- P(z/open) is causal.

+ Oftfen causa’l\h‘m@ige is easier to obtain.
Bayes rule allows us St s

/

P(z | open )P (open )
P(z)

P(open |z)=




Normalization

P(y|x) P(x)

P(x|y)= =1 P(y|x)P(x)
P(y)
_ 1
n-p -
DTy Glore
Algorithm:

Vo oaw = P(y|x) P(x)

YV ooP(x|y)= 1 wx

xly

Example

* P(zlopen) = 0.6 P(z|—open) = 0.3
* P(open) = P(—open) = 0.5

P(z|open )P(open )

P(open |z)=
P(z|open )p(open )t P(z | open ) p(—open)

0.6°0.5 2
= —-=).67

P(open |z)= ————————
0.6°0.5+).3:05 3

zraises the probability that the door is open.
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Combining Evidence

* Suppose our robot obtains another
observation z,.

* How can we integrate this new information?

* More generally, how can we estimate
Px|z,..z,)?

Recursive Bayesian Updating

_P(zu|x,z1,..,z00) P(X| 21,00, 20 1)

P(zu|zi,...,zn-1)

P(x|z1,...,zn)

Markov assumption: z,, is independent of z,,...,z, ; if
we know X.
P(zn|x,z1,.0.,z0-1) P(X |z, ,z0 1)
P(zn|ziy.ooyzn-1)
_ P(zn|x) P(x|z1,..,z0-1)
P(zn|ziyeoyzn—1)
=1 P(zn|x) P(x|z1,.c.,zn-1)

P(x|zi,...,zn) =

=0, Il Gilorm
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Example: Second Measurement
* P(z,|open) = 0.5 P(z,|—open) = 0.6
* P(open|z;)=2/3

P(z, |open ) P(open |z,)
P(z, |open ) P(open | z,)* P(z,|7open ) P(Topen |z,)

P(open |z,,z)) =

5
= — = 0.625
8

[FUNSY
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=

z, lowers the probability that the door is open.




