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CSE 473

Uncertainty
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Many Techniques Developed

• Fuzzy Logic
• Certainty Factors
• Non-monotonic logic
• Probability

• Only one has stood the test of time!
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Aspects of Uncertainty

• Suppose you have a flight at 12 noon
• When should you leave for SEATAC

 What are traffic conditions?
 How crowded is security?

• Leaving 18 hours early may get you there 
 But … ?
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Decision Theory = 
Probability + Utility Theory

Min before noon P(arrive-in-time)
20 min 0.05
30 min 0.25
45 min 0.50
60 min 0.75
120 min 0.98

1080 min 0.99
Depends on your preferences
Utility theory: representing & reasoning 

about preferences
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What Is Probability?

• Probability: Calculus for dealing with 
nondeterminism and uncertainty

• Cf. Logic
• Probabilistic model: Says how often we 

expect different things to occur
• Cf. Function
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Why Should You Care?

• The world is full of uncertainty 
 Logic is not enough
 Computers need to be able to handle uncertainty

• Probability: new foundation for AI (& CS!)

• Massive amounts of data around today
 Statistics and CS are both about data
 Statistics lets us summarize and understand it
 Statistics is the basis for most learning

• Statistics lets data do our work for us
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Outline

• Basic notions
 Atomic events, probabilities, joint distribution
 Inference by enumeration
 Independence & conditional independence
 Bayes’ rule

• Bayesian networks
• Statistical learning
• Dynamic Bayesian networks (DBNs)
• Markov decision processes (MDPs)
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Logic     vs. Probability

Symbol: Q, R … Random variable: Q …

Boolean values: T, F Domain: you specify
e.g. {heads, tails} [1, 6]

State of the world: 
Assignment to Q, R … Z

Atomic event: complete
specification of world: Q… Z
• Mutually exclusive
• Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

Joint distribution: Prob.
of every atomic event
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Syntax for Propositions
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Axioms of Probability Theory

• All probabilities between 0 and 1
 0 ≤ P(A) ≤ 1
 P(true) = 1        
 P(false) = 0.

• The probability of  disjunction is:
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Prior Probability

Any question can be answered by the 
joint distribution
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Conditional probability
• Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all I know

• Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

• If we know more, e.g., cavity is also given, then we have
P(cavity | toothache,cavity) = 1

• New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is 
crucial
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Conditional Probability 

• P(A | B) is the probability of A given B
• Assumes that B is the only info known.
• Defined by:
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Dilemma at the Dentist’s

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
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Inference by Enumeration

P(toothache)=.108+.012+.016+.064
= .20  or 20%
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Inference by Enumeration

P(toothache cavity) = .20 + ??.072 + .008

.28
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Inference by Enumeration
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Problems ??

• Worst case time: O(dn)
 Where d = max arity
 And n = number of random variables

• Space complexity also O(dn)  
 Size of joint distribution

• How get O(dn) entries for table??
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Independence

• A and B are independent iff:
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These two constraints are 
logically equivalent

• Therefore, if A and B are independent:

© UW CSE AI Faculty 20

Independence

Complete independence is powerful but rare
What to do if it doesn’t hold?
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Conditional Independence

Instead of 7 entries, only need 5
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Conditional Independence II
P(catch | toothache,  cavity) = P(catch |  cavity)
P(catch | toothache, cavity) = P(catch | cavity)

Why only 5 entries in table?
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Power of Cond. Independence

• Often, using conditional independence 
reduces the storage complexity of the joint 
distribution from exponential to linear!!

• Conditional independence is the most basic & 
robust form of knowledge about uncertain 
environments.
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Bayes Formula

evidence

prior likelihood
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Use to Compute Diagnostic
Probability from Causal Probability

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001, 
P(S) = 0.1, 
P(S|M)= 0.8

P(M|S) =
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Bayes’ Rule & Cond. Independence
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Simple Example of State Estimation

• Suppose a robot obtains measurement z
• What is P(doorOpen|z)?
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Causal vs. Diagnostic Reasoning

• P(open|z) is diagnostic.
• P(z|open) is causal.
• Often causal knowledge is easier to obtain.
• Bayes rule allows us to use causal knowledge:
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Normalization
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Example

• P(z|open) = 0.6 P(z| open) = 0.3

• P(open) = P( open) = 0.5
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• z raises the probability that the door is open.
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Combining Evidence

• Suppose our robot obtains another 
observation z2.

• How can we integrate this new information?

• More generally, how can we estimate
P(x| z1...zn )?
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Recursive Bayesian Updating
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Markov assumption: zn is independent of z1,...,zn-1 if
we know x.

)()|(

),,|()|(

),,|(

),,|()|(

),,|(

),,|(),,,|(
),,|(

...1

...1

11

11

11

11

1111

1

xPxzP

zzxPxzP

zzzP

zzxPxzP

zzzP

zzxPzzxzP
zzxP

ni

i
n

nn

nn

nn

nn

nnn

n














9

© UW CSE AI Faculty 33

Example: Second Measurement 

• P(z2|open) = 0.5 P(z2| open) = 0.6

• P(open|z1)=2/3
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• z2 lowers the probability that the door is open.


