

Many Techniques Developed

- Fuzzy Logic
- Certainty Factors
- Non-monotonic logic
- Probability
- Only one has stood the test of time!

Aspects of Uncertainty

- Suppose you have a flight at 12 noon
- When should you leave for SEATAC What are traffic conditions? How crowded is security?
- Leaving 18 hours early may get you there But ... ?

Decision Theory = Probability + Utility Theory

Min before noon	P(arrive-in-time)			
20 min	0.05			
30 min	0.25			
45 min	0.50			
60 min	0.75			
120 min	0.98			
1080 min	0.99			
Depends on your <i>preferences</i>				
Utility theory: representing & reasoning				
about preferences				

What Is Probability?

- **Probability:** Calculus for dealing with nondeterminism and uncertainty
- Cf. Logic
- **Probabilistic model**: Says how often we expect different things to occur
- Cf. Function

Why Should You Care?

- The world is full of uncertainty Logic is not enough Computers need to be able to handle uncertainty
 Probability: new foundation for AT (% CSI)
- Probability: new foundation for AI (& CS!)
- Massive amounts of data around today Statistics and CS are both about data Statistics lets us summarize and understand it Statistics is the basis for most learning
- Statistics lets data do our work for us

Outline

- Basic notions
 - Atomic events, probabilities, joint distribution Inference by enumeration Independence & conditional independence Bayes' rule
- Bayesian networks
- Statistical learning
- Dynamic Bayesian networks (DBNs)
- Markov decision processes (MDPs)

Logic <i>vs</i>	. Probability	
Symbol: Q, R	Random variable: Q	
Boolean values: T, F	Domain: you specify e.g. {heads, tails} [1, 6]	
State of the world: Assignment to Q, R Z	Atomic event: complete specification of world: Q Z • Mutually exclusive • Exhaustive	
	Prior probability (aka Unconditional prob: P(Q)	
	Joint distribution: Prob. of every atomic event	

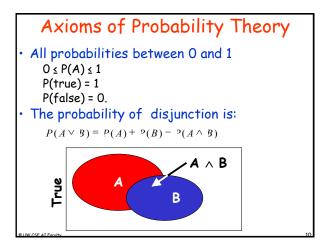
Syntax for Propositions

Propositional or Boolean random variables e.g., *Cavity* (do I have a cavity?)

Discrete random variables (finite or infinite) e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions



Prior Probability

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

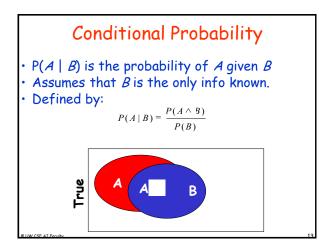
Probability distribution gives values for all possible assignments: $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2$ matrix of values:

Any question can be answered by the joint distribution

Conditional probability

- Conditional or posterior probabilities e.g., P(cavity | toothache) = 0.8 i.e., given that toothache is all I know
- Notation for conditional distributions: P(Cavity | Toothache) = 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have $P(cavity \mid toothache, cavity) = 1$
- New evidence may be irrelevant, allowing simplification: P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial



Dilemma at the Dentist's

What is the probability of a cavity given a toothache? What is the probability of a cavity given the probe catches?

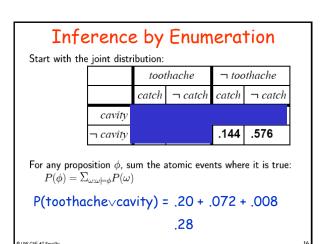
Inference by Enumeration

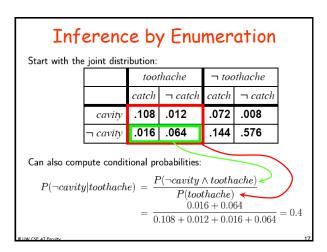
Start with the joint distribution:

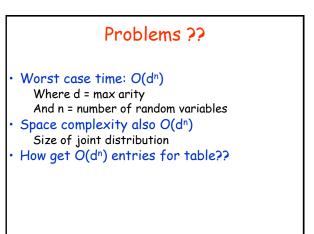
	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity			.072	.008
\neg cavity	_		.144	.576

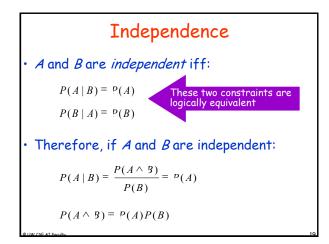
For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi)=\Sigma_{\omega:\omega\models\phi}P(\omega)$

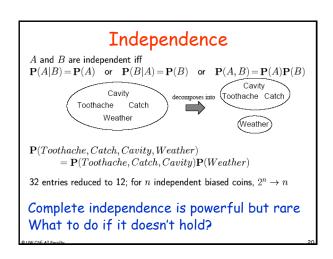
P(toothache)=.108+.012+.016+.064 = .20 or 20%











Conditional Independence

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: (1) P(-t,t) = P(-t,t) = P(-t,t)

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

 $\begin{array}{l} Catch \text{ is } \textit{conditionally independent} \text{ of } Toothache \text{ given } Cavity: \\ \mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity) \end{array}$

Instead of 7 entries, only need 5

Conditional Independence II

P(catch | toothache, cavity) = P(catch | cavity) P(catch | toothache, ¬cavity) = P(catch | ¬cavity)

Equivalent statements:

 $\mathbf{P}(Toothache|Catch,Cavity) = \mathbf{P}(Toothache|Cavity)$

 $\mathbf{P}(Toothache, Catch|Cavity) = \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity)$

Why only 5 entries in table?

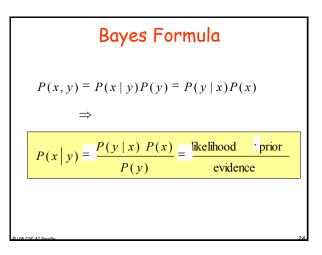
Write out full joint distribution using chain rule:

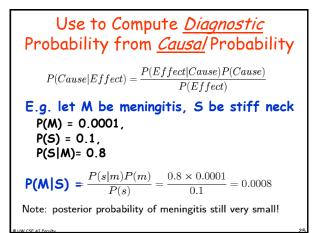
- $\mathbf{P}(Toothache, Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch,Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$
- $= \mathbf{P}(Toothache|Cavity)\mathbf{P}(Catch|Cavity)\mathbf{P}(Cavity)$

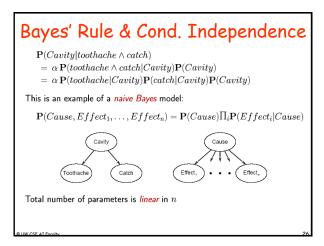
I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

Power of Cond. Independence

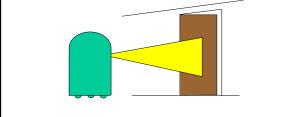
- Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!
- Conditional independence is the most basic & robust form of knowledge about uncertain environments.

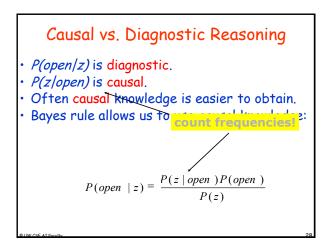


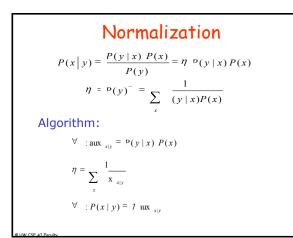




Simple Example of State Estimation Suppose a robot obtains measurement z What is P(doorOpen/z)?







Example

•
$$P(z|open) = 0.6$$
 $P(z|\neg open) = 0.3$
• $P(open) = P(\neg open) = 0.5$
 $P(open | z) = \frac{P(z | open)P(open)}{P(z | open)p(open) + P(z | \neg open)p(\neg open)}$
 $P(open | z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$

• z raises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_2 .
- How can we integrate this new information?
- More generally, how can we estimate $P(x | z_1...z_n)$?

Recursive Bayesian Updating

$$P(x | z_{1},..., z_{n}) = \frac{P(z_{n} | x, z_{1},..., z_{n-1}) P(x | z_{1},..., z_{n-1})}{P(z_{n} | z_{1},..., z_{n-1})}$$
Markov assumption: z_{n} is independent of $z_{1},..., z_{n-1}$ if
we know x .

$$P(x | z_{1},..., z_{n}) = \frac{P(z_{n} | x, z_{1},..., z_{n-1}) P(x | z_{1},..., z_{n-1})}{P(z_{n} | z_{1},..., z_{n-1})}$$

$$= \frac{P(z_{n} | x) P(x | z_{1},..., z_{n-1})}{P(z_{n} | z_{1},..., z_{n-1})}$$

$$= \eta P(z_{n} | x) P(x | z_{1},..., z_{n-1})$$

$$= \eta P(z_{n} | x) P(x | z_{1},..., z_{n-1})$$

