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Planning

CSE 473
AIMA, 10.3 and 11
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Overview

• FOL Planning in Situation Calculus
• Planning vs. Problem Solving
• STRIPS Formalism
• Partial Order Planning
• GraphPlan
• SATPlan
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FOL Planning: Situation Calculus

 Situations: Logical description of world at 
some point in time 
 Result(a,s) returns next state / situation

 Fluents: Functions and predicates that 
change over time
 Holding(G1, S4)

 Atemporal: Static functions and predicates
 Gold(G1)
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Situation Calculus

 Result([], s) = s
 Result([a|seq], s) = Result(seq, Result(a, s))
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Situation Calculus

 Projection task: Deduce outcome of 
sequence of actions
 Planning task: Find sequence of actions that 

achieves desired effect

 Examples:
 At( Agent, [1,1], S0) At(G1, [1,2], S0 ) 

¬Holding( G1, S0 ) 

 Gold( G1) Adjacent( [1,1], [1,2]) 
Adjacent( [1,2], [1,1]) 
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Situation Calculus

 Projection / prediction / verification:
 At( G1, [1,1], Result([Go([1,1],[1,2]), Grab(G1), 

Go([1,2],[1,1])], S0 ))

 Planning:
 seq At( G1, [1,1], Result(seq, S0)) 
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Actions in Situation Calculus
 Possibility axioms:
 At( Agent, x, s) Adjacent( x,y) Poss( Go(x,y),s)

 Gold( g) At(Agent,x,s) At( g, x, s) Poss( Grab(g),s)

 Effect axioms:
 Poss( Go(x,y),s)  At( Agent, y, Result( Go(x,y),S))
 Poss( Grab(g),s) Holding( g, Result( Grab(g),S))
 Poss( Release(g),s) ¬ Holding( g, Result( Release(g),S))

 Can prove now:
 At(Agent, [1,2], Result(Go([1,1],[1,2]), S0 ))
 Can‟t show: At(G1, [1,2], Result(Go([1,1],[1,2]), S0 ))
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Frame Problem
 How to handle the things that are NOT changed by 

an action?

 A actions, E effects per action, F fluents

 Representational frame problem: Size of knowledge 
base should depend on number of actions and 
effects, not fluents: O(AE)

 Inferential frame problem: Updates / prediction of 
t steps in O(Et) time



3

© UW CSE AI Faculty 9

Representational Frame Problem
 Naïve solution O(AF):

 At(o,x,s) (o Agent) ¬Holding(o,s) At(o,x,Result(Go(y,z),s))

 Successor-state axioms (Ray Reiter, ‟91) O(AE,F):
 Action possible 

(fluent true in result state  Action‟s effect made it true
v It was true before and action didn‟t change it)

 Poss(a,s) 
(At(Agent,y,Result(a,s)  a = Go(x,y) 

v (At(Agent,y,s) a Go(y,z)))
 Poss(a,s) 

Fi(Result(a,s))  (a = A1v a = A2v …) 
v Fi(s) a A3 a A4 …) 
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GOLOG
 Cognitive robotics

 Robot programming language based on 
Situation Calculus

 Extensions can handle concurrent actions, 
stochastic environments, and sensing

 Still too inefficient due to generality
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GOLOG Application
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Planning
• Given 

 a logical description of the initial situation,
 a logical description of the goal conditions, and
 a logical description of a set of possible actions,

• find 
 a sequence of actions (a plan of action) that 

brings us from the initial situation to a situation in 
which the goal conditions hold.



4

© UW CSE AI Faculty 13

Input Representation

• Description of initial state of world
 E.g., Set of propositions:
 ((block a)  (block b) (block c)  (on-table a) (on-

table b) (clear a)  (clear b) (clear c) (arm-empty))

• Description of goal: i.e. set of worlds
 E.g., Logical conjunction
 Any world satisfying conjunction is a goal
 (and (on a b) (on b c)))

• Description of available actions
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Planning vs. Problem-Solving
Basic difference: Explicit, logic-based representation

• States/Situations: descriptions of the world by 
logical formulae vs. data structures
 agent can explicitly reason about and communicate 
with the world.

• Goal conditions as logical formulae vs. goal test (black 
box)
 agent can reflect on its goals.

• Operators: Axioms or transformation on formulae vs. 
modification of data structures by programs
 agent can gain information about the effects of 
actions by inspecting the operators.
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Searching in State Space
We could search 
through the state 
space and thereby 
reduce planning to 
searching.

We can search 
forwards 
(progression 
planning):

Or alternatively, we can start at the goal and work backwards 
(regression planning).

Possible since the operators provide enough information
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Ways to make “plans”

Generative Planning
Reason from first principles (knowledge of 

actions)
Requires formal model of actions

Case-Based Planning
Retrieve old plan which worked on similar problem
Revise retrieved plan for this problem

Reinforcement Learning
Act ”randomly” - noticing effects 
Learn reward, action models, policy
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Simplifying Assumptions

Environment

Percepts Actions

What action 

next?  

Static 
vs. 

Dynamic

Fully Observable 
vs.

Partially 
Observable

Deterministic 
vs. 

Stochastic

Instantaneous 
vs. 
Durative

Full vs. Partial satisfaction

Perfect
vs.
Noisy
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Classical Planning

Environment
Static 

Fully Observable 
Deterministic Instantaneous 

Full

Perfect

I  = initial state      G =  goal state Oi(prec) (effects)

[ I ] Oi Oj Ok Om [ G ]
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How Represent Actions?

• Simplifying assumptions
 Atomic time
 Agent is omniscient (no sensing necessary). 
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions (conjunction)
 Actions: 

• Precondition: (conjunction of positive literals, ground, 
no functions)

• Effects (conjunction of literals, ground, no function)

 Goals = conjunctions (Rich ^ Famous)
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STRIPS Actions
• Action = function: worldState worldState
• Precondition 

 says where function defined
• Effects 

 say how to change set of propositions

a
a

north11

W0 W1

north11

precond: (and (agent-at 1 1)

(agent-facing north))

effect: (and  (agent-at 1 2)

(not (agent-at 1 1)))
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Action Schemata

(:operator pick-up

:parameters ((block ?ob1))

:precondition (and (clear ?ob1) 

(on-table ?ob1) 

(arm-empty))

:effect (and (not (clear ?ob1))

(not (on-table ?ob1))

(not (arm-empty))

(holding ?ob1)))

• Instead of defining: 
pickup-A and pickup-B and …

• Define a schema:
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Forward State-Space Search

• Progression planning
• Initial state: set of positive ground literals 

(CWA: literals not appearing are false)
• Actions: 

 applicable if preconditions satisfied
 add positive effect literals
 remove negative effect literals

• Goal test: checks whether state satisfies 
goal

• Step cost: typically 1
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Backward State-Space Search 

DC
B
A

E

D

C
B
A

E

D
C
B
A

E

* * *

• Regression planning
• Problem: Need to find 

predecessors of state
• Problem: Many possible goal 

states are equally acceptable.
• From which one does one search?

A
C

B

Initial State is 

completely defined

D
E
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Regression
• Let G be  a KR sentence (e.g. in logic)
• Relevance: needs to achieve one subgoal
• Consistency: does not undo any other subgoal
• Regressing a goal, G,  thru an action, A

yields the weakest precondition G‟
 Such that: if G‟ is true before A is executed
 G is guaranteed to be true afterwards

A G

pre
cond

e
ffe

ct

G’

Represents a 
set of world 

states

Represents a 
set of world 

states
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Regression Example

pick-up :parameters ((block ?ob1))
:precondition (and (clear ?ob1) 

(on-table ?ob1) 
(arm-empty))

:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (arm-empty))
(holding ?ob1)))

A G

pre
cond

e
ffe

ct

G’

(and (holding C) 
(on A B))

(and (clear C) 
(on-table C) 
(arm-empty) 
(on A B))

Remove positive effects
Add preconditions for A
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Heuristics for State-Space Search

• Subgoal independence assumption:
 Cost of solving conjunction is sum of cost of solving 

each subgoal independently
 Optimistic: ignores negative interactions
 Pessimistic: ignores redundancy

• Relaxed problems: 
 Remove all preconditions from actions and assume 

subgoal independence  heuristic is number of 
unsatisfied goals

 Remove preconditions and negative effects:
• Goal(A^B^C)
• Action(X,Effect:A^P)
• Action(Y,Effect:B^C^Q)
• Action(Z,Effect:B^P^Q)

 Set cover problem: NP-hard
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Plan = Sequence of Actions?
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Searching in Plan Space
Instead of searching in state space, can search in space of all plans.

Initial state is partial plan containing only start and goal states:

Goal state is a complete plan that solves the given problem:
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During search, plan is represented by sets of

• actions (empty plan is Start and Finish only)

• ordering constraints (A<B: A before B)

• causal links Ai Aj means “Ai produces the 
precondition c for Aj” 

• open preconditions (not yet achieved   
preconditions)

• variable assignments x = t, where x is a variable 
and t is a constant or a variable.

• Solutions to planning problems must be complete and 
consistent.

Representation of Partial Order 
(Non-Linear) Plans

c
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Completeness and Consistency
Complete: Every precondition of every step is fulfilled

Consistent: No cycles in ordering constraints and no 
conflicts with causal links

Shoe example solution:

Actions: { RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}

Orderings: { RightSock < RightShoe, LeftSock < LeftShoe}

Links: { RightSock     RightShoe, LeftSock     LeftShoe, 

RightShoe      Finish, LeftShoe     Finish}

OpenPreconditions: {}

RightShoeOn LeftShoeOn

RightSockOn LeftSockOn
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Searching in Plan Space

 Successor function: (plan refinement)

 pick open precondition p and check all actions that
generate p

 consistency:

 add causal link and ordering constraint(s)

 check whether there are potential conflicts
(clobberers) and try to protect violated links

 Goal test: No open preconditions
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Protection of Causal Links

(a) Conflict: S3 threatens the causal link between S1 and S2.

Conflict solutions:

(b) Demotion: Place threatening step before causal link

(c) Promotion: Place threatening step after causal link
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Blocks World Example
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Blocks World Example
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Blocks World Example
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Blocks World Example
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Blocks World Example
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POP Algorithm

Correctness: Every result of the POP algorithm is a 
complete, correct plan.

Completeness: If breadth-first-search is used, the 
algorithm finds a solution, given one exists.
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GraphPlan: Basic idea

• Construct a graph that encodes constraints 
on possible plans

• Use this “planning graph” to constrain search 
for a valid plan:
 If valid plan exists, it‟s a subgraph of the 

planning graph

• Planning graph can be built for each problem 
in polynomial time
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Problems handled by GraphPlan*

• Pure STRIPS operators: 
 conjunctive preconditions 
 no negated preconditions
 no conditional effects
 no universal effects

• Finds “shortest parallel plan”
• Sound, complete and will terminate with 

failure if there is no plan.

*Version in [Blum& Furst IJCAI 95, AIJ 97], 

later extended to handle all these restrictions [Koehler et al 97]
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Graphplan

• Phase 1 - Graph Expansion
 Necessary (insufficient) conditions for plan 

existence
 Local consistency of plan-as-CSP

• Phase 2 - Solution Extraction
 Variables 

• action execution at a time point

 Constraints 
• goals, subgoals achieved
• no side-effects between actions
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The Plan Graph

…

…

…

level 0 level 2 level 4 level 6

level 1 level 3 level 5

Note: a few noops missing for clarity
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Graph Expansion

Proposition level 0 

initial conditions

Action level i

no-op for each proposition at level i-1

action for each operator instance whose 

preconditions exist at level i-1

Proposition level i

effects of each no-op and action at level i

…

…

…

i-1 i i+10
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Mutual Exclusion

Two actions are mutex if
• one clobbers the other’s effects or preconditions

• they have mutex preconditions

Two proposition are mutex if
•one is the negation of the other 

•all ways of achieving them are mutex

p

p

p

p

p

p
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Graphplan

• Create level 0 in planning graph
• Loop

 If goal contents of highest level (nonmutex)
 Then search graph for solution

• If find a solution then return and terminate

 Else extend graph one more level
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Searching for a Solution Plan

• Backward chain on the planning graph
• Achieve goals level by level
• At level k, pick a subset of non-mutex actions to 

achieve current goals. Their preconditions become 
the goals for k-1 level.

• Build goal subset by picking each goal and choosing 
an action to add. Use one already selected if 
possible. Do forward checking on remaining goals 
(backtrack if can‟t pick non-mutex action)
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Searching for a Solution

If goals are present & non-mutex:
Choose action to achieve each goal

Add preconditions to next goal set
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Dinner Date

Initial Conditions:  (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

(:operator carry  :precondition 

:effect (:and (noGarbage) (:not (cleanHands)))

(:operator dolly   :precondition 

:effect (:and (noGarbage) (:not (quiet)))

(:operator cook   :precondition (cleanHands)

:effect (dinner))

(:operator wrap   :precondition (quiet)

:effect (present))
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Planning Graph
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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Are there any exclusions?
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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Do we have a solution?
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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Extend the Planning Graph
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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Searching Backwards
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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One (of 4) Possibilities
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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One (of 4) possibilities
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop        1 Action 2  Prop             3 Action 4 Prop
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Observation 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B
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Observation 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B
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Observation 3

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…
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Observation 4

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A
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Observation 5

Planning Graph „levels off‟. 
• After some time k all levels are identical
• Because it‟s a finite space, the set of literals 

never decreases and mutexes don‟t reappear.
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The Last Word on Planning: SATPlan

• Idea: test the satisfiability of the logical sentence:

(initial state) (all possible action descriptions for t 
steps) (goal achieved at step t)

• Create and test sentence for each t, t = 0, 1, 2, …, Tmax

• Action descriptions include

1. Successor-state axioms from situation calculus     
(superscript denotes t)  

E.g., At(P1,JFK)1 (At(P1,SFO)0 Fly(P1,SFO,JFK)0) 
(At(P1,JFK)0 ¬Fly(P1,JFK,SFO)0)

2. Precondition axioms E.g., Fly(P1,SFO,JFK)0  At(P1,SFO)0

3. State constraints.

E.g., p, x, y, t   (x y) ¬(At(p,x)t At(p,y)t)
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Planning using SATPlan
• Sentence to be tested (for a particular t): 

(initial state) (all possible action descriptions) (goal)

• A model will assign true to actions that are part 
of correct plan and false to other actions

 If no plan exists, sentence will be 
unsatisfiable

• Use SAT solver such as DPLL or WalkSAT to 
test satisfiability (and find plan if one exists)

• SATPlan can handle large planning problems

 E.g., Up to 30-step plans in blocks world
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Some Applications of Planning
• Assembly line planning at Hitachi
• Software procurement planning at Price 

Waterhouse
• Back-axle assembly planning at Jaguar Cars
• Logistics planning in the US Navy
• Scheduling mission-command sequences for 

satellites
• Observation planning for Hubble telescope
• Spacecraft control for Deep Space One 

probe
• Etc.
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Planning Summary

 Problem solving algorithms that operate on explicit 
propositional representations of states and actions.

 Make use of specific heuristics.
 STRIPS: restrictive propositional language
 State-space search: forward (progression) / 

backward (regression) search
 Partial order planners search space of plans from 

goal to start, adding actions to achieve goals
 GraphPlan: Generates planning graph to guide 

backwards search for plan
 SATplan: Converts planning problem into 

propositional axioms. Uses SAT solver to find plan.


