
1

Planning

CSE 473
AIMA, 10.3 and 11

© UW CSE AI Faculty 2

Overview

• FOL Planning in Situation Calculus
• Planning vs. Problem Solving
• STRIPS Formalism
• Partial Order Planning
• GraphPlan
• SATPlan

© UW CSE AI Faculty 3

FOL Planning: Situation Calculus

 Situations: Logical description of world at
some point in time
 Result(a,s) returns next state / situation

 Fluents: Functions and predicates that
change over time
 Holding(G1, S4)

 Atemporal: Static functions and predicates
 Gold(G1)

© UW CSE AI Faculty 4

Situation Calculus

 Result([], s) = s
 Result([a|seq], s) = Result(seq, Result(a, s))

2

© UW CSE AI Faculty 5

Situation Calculus

 Projection task: Deduce outcome of
sequence of actions
 Planning task: Find sequence of actions that

achieves desired effect

 Examples:
 At(Agent, [1,1], S0) At(G1, [1,2], S0)

¬Holding(G1, S0)

 Gold(G1) Adjacent([1,1], [1,2])
Adjacent([1,2], [1,1])

© UW CSE AI Faculty 6

Situation Calculus

 Projection / prediction / verification:
 At(G1, [1,1], Result([Go([1,1],[1,2]), Grab(G1),

Go([1,2],[1,1])], S0))

 Planning:
 seq At(G1, [1,1], Result(seq, S0))

© UW CSE AI Faculty 7

Actions in Situation Calculus
 Possibility axioms:
 At(Agent, x, s) Adjacent(x,y) Poss(Go(x,y),s)

 Gold(g) At(Agent,x,s) At(g, x, s) Poss(Grab(g),s)

 Effect axioms:
 Poss(Go(x,y),s) At(Agent, y, Result(Go(x,y),S))
 Poss(Grab(g),s) Holding(g, Result(Grab(g),S))
 Poss(Release(g),s) ¬ Holding(g, Result(Release(g),S))

 Can prove now:
 At(Agent, [1,2], Result(Go([1,1],[1,2]), S0))
 Can‟t show: At(G1, [1,2], Result(Go([1,1],[1,2]), S0))

© UW CSE AI Faculty 8

Frame Problem
 How to handle the things that are NOT changed by

an action?

 A actions, E effects per action, F fluents

 Representational frame problem: Size of knowledge
base should depend on number of actions and
effects, not fluents: O(AE)

 Inferential frame problem: Updates / prediction of
t steps in O(Et) time

3

© UW CSE AI Faculty 9

Representational Frame Problem
 Naïve solution O(AF):

 At(o,x,s) (o Agent) ¬Holding(o,s) At(o,x,Result(Go(y,z),s))

 Successor-state axioms (Ray Reiter, ‟91) O(AE,F):
 Action possible

(fluent true in result state  Action‟s effect made it true
v It was true before and action didn‟t change it)

 Poss(a,s)
(At(Agent,y,Result(a,s)  a = Go(x,y)

v (At(Agent,y,s) a Go(y,z)))
 Poss(a,s)

Fi(Result(a,s))  (a = A1v a = A2v …)
v Fi(s) a A3 a A4 …)

© UW CSE AI Faculty 10

GOLOG
 Cognitive robotics

 Robot programming language based on
Situation Calculus

 Extensions can handle concurrent actions,
stochastic environments, and sensing

 Still too inefficient due to generality

© UW CSE AI Faculty 11

GOLOG Application

© UW CSE AI Faculty 12

Planning
• Given

 a logical description of the initial situation,
 a logical description of the goal conditions, and
 a logical description of a set of possible actions,

• find
 a sequence of actions (a plan of action) that

brings us from the initial situation to a situation in
which the goal conditions hold.

4

© UW CSE AI Faculty 13

Input Representation

• Description of initial state of world
 E.g., Set of propositions:
 ((block a) (block b) (block c) (on-table a) (on-

table b) (clear a) (clear b) (clear c) (arm-empty))

• Description of goal: i.e. set of worlds
 E.g., Logical conjunction
 Any world satisfying conjunction is a goal
 (and (on a b) (on b c)))

• Description of available actions

© UW CSE AI Faculty 14

Planning vs. Problem-Solving
Basic difference: Explicit, logic-based representation

• States/Situations: descriptions of the world by
logical formulae vs. data structures
 agent can explicitly reason about and communicate
with the world.

• Goal conditions as logical formulae vs. goal test (black
box)
 agent can reflect on its goals.

• Operators: Axioms or transformation on formulae vs.
modification of data structures by programs
 agent can gain information about the effects of
actions by inspecting the operators.

© UW CSE AI Faculty 15

Searching in State Space
We could search
through the state
space and thereby
reduce planning to
searching.

We can search
forwards
(progression
planning):

Or alternatively, we can start at the goal and work backwards
(regression planning).

Possible since the operators provide enough information

© UW CSE AI Faculty 16

Ways to make “plans”

Generative Planning
Reason from first principles (knowledge of

actions)
Requires formal model of actions

Case-Based Planning
Retrieve old plan which worked on similar problem
Revise retrieved plan for this problem

Reinforcement Learning
Act ”randomly” - noticing effects
Learn reward, action models, policy

5

© UW CSE AI Faculty 17

Simplifying Assumptions

Environment

Percepts Actions

What action

next?

Static
vs.

Dynamic

Fully Observable
vs.

Partially
Observable

Deterministic
vs.

Stochastic

Instantaneous
vs.
Durative

Full vs. Partial satisfaction

Perfect
vs.
Noisy

© UW CSE AI Faculty 18

Classical Planning

Environment
Static

Fully Observable
Deterministic Instantaneous

Full

Perfect

I = initial state G = goal state Oi(prec) (effects)

[I] Oi Oj Ok Om [G]

© UW CSE AI Faculty 19

How Represent Actions?

• Simplifying assumptions
 Atomic time
 Agent is omniscient (no sensing necessary).
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions (conjunction)
 Actions:

• Precondition: (conjunction of positive literals, ground,
no functions)

• Effects (conjunction of literals, ground, no function)

 Goals = conjunctions (Rich ^ Famous)

© UW CSE AI Faculty 20

STRIPS Actions
• Action = function: worldState worldState
• Precondition

 says where function defined
• Effects

 say how to change set of propositions

a
a

north11

W0 W1

north11

precond: (and (agent-at 1 1)

(agent-facing north))

effect: (and (agent-at 1 2)

(not (agent-at 1 1)))

6

© UW CSE AI Faculty 21

Action Schemata

(:operator pick-up

:parameters ((block ?ob1))

:precondition (and (clear ?ob1)

(on-table ?ob1)

(arm-empty))

:effect (and (not (clear ?ob1))

(not (on-table ?ob1))

(not (arm-empty))

(holding ?ob1)))

• Instead of defining:
pickup-A and pickup-B and …

• Define a schema:

© UW CSE AI Faculty 22

Forward State-Space Search

• Progression planning
• Initial state: set of positive ground literals

(CWA: literals not appearing are false)
• Actions:

 applicable if preconditions satisfied
 add positive effect literals
 remove negative effect literals

• Goal test: checks whether state satisfies
goal

• Step cost: typically 1

© UW CSE AI Faculty 23

Backward State-Space Search

DC
B
A

E

D

C
B
A

E

D
C
B
A

E

* * *

• Regression planning
• Problem: Need to find

predecessors of state
• Problem: Many possible goal

states are equally acceptable.
• From which one does one search?

A
C

B

Initial State is

completely defined

D
E

© UW CSE AI Faculty 24

Regression
• Let G be a KR sentence (e.g. in logic)
• Relevance: needs to achieve one subgoal
• Consistency: does not undo any other subgoal
• Regressing a goal, G, thru an action, A

yields the weakest precondition G‟
 Such that: if G‟ is true before A is executed
 G is guaranteed to be true afterwards

A G

pre
cond

e
ffe

ct

G’

Represents a
set of world

states

Represents a
set of world

states

7

© UW CSE AI Faculty 25

Regression Example

pick-up :parameters ((block ?ob1))
:precondition (and (clear ?ob1)

(on-table ?ob1)
(arm-empty))

:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (arm-empty))
(holding ?ob1)))

A G

pre
cond

e
ffe

ct

G’

(and (holding C)
(on A B))

(and (clear C)
(on-table C)
(arm-empty)
(on A B))

Remove positive effects
Add preconditions for A

© UW CSE AI Faculty 26

Heuristics for State-Space Search

• Subgoal independence assumption:
 Cost of solving conjunction is sum of cost of solving

each subgoal independently
 Optimistic: ignores negative interactions
 Pessimistic: ignores redundancy

• Relaxed problems:
 Remove all preconditions from actions and assume

subgoal independence  heuristic is number of
unsatisfied goals

 Remove preconditions and negative effects:
• Goal(A^B^C)
• Action(X,Effect:A^P)
• Action(Y,Effect:B^C^Q)
• Action(Z,Effect:B^P^Q)

 Set cover problem: NP-hard

© UW CSE AI Faculty 27

Plan = Sequence of Actions?

© UW CSE AI Faculty 28

Searching in Plan Space
Instead of searching in state space, can search in space of all plans.

Initial state is partial plan containing only start and goal states:

Goal state is a complete plan that solves the given problem:

8

© UW CSE AI Faculty 29

During search, plan is represented by sets of

• actions (empty plan is Start and Finish only)

• ordering constraints (A<B: A before B)

• causal links Ai Aj means “Ai produces the
precondition c for Aj”

• open preconditions (not yet achieved
preconditions)

• variable assignments x = t, where x is a variable
and t is a constant or a variable.

• Solutions to planning problems must be complete and
consistent.

Representation of Partial Order
(Non-Linear) Plans

c

© UW CSE AI Faculty 30

Completeness and Consistency
Complete: Every precondition of every step is fulfilled

Consistent: No cycles in ordering constraints and no
conflicts with causal links

Shoe example solution:

Actions: { RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}

Orderings: { RightSock < RightShoe, LeftSock < LeftShoe}

Links: { RightSock  RightShoe, LeftSock  LeftShoe,

RightShoe  Finish, LeftShoe  Finish}

OpenPreconditions: {}

RightShoeOn LeftShoeOn

RightSockOn LeftSockOn

© UW CSE AI Faculty 31

Searching in Plan Space

 Successor function: (plan refinement)

 pick open precondition p and check all actions that
generate p

 consistency:

 add causal link and ordering constraint(s)

 check whether there are potential conflicts
(clobberers) and try to protect violated links

 Goal test: No open preconditions

© UW CSE AI Faculty 32

Protection of Causal Links

(a) Conflict: S3 threatens the causal link between S1 and S2.

Conflict solutions:

(b) Demotion: Place threatening step before causal link

(c) Promotion: Place threatening step after causal link

9

© UW CSE AI Faculty 33

Blocks World Example

© UW CSE AI Faculty 34

Blocks World Example

© UW CSE AI Faculty 35

Blocks World Example

© UW CSE AI Faculty 36

Blocks World Example

10

© UW CSE AI Faculty 37

Blocks World Example

© UW CSE AI Faculty 38

POP Algorithm

Correctness: Every result of the POP algorithm is a
complete, correct plan.

Completeness: If breadth-first-search is used, the
algorithm finds a solution, given one exists.

© UW CSE AI Faculty 39

GraphPlan: Basic idea

• Construct a graph that encodes constraints
on possible plans

• Use this “planning graph” to constrain search
for a valid plan:
 If valid plan exists, it‟s a subgraph of the

planning graph

• Planning graph can be built for each problem
in polynomial time

© UW CSE AI Faculty 40

Problems handled by GraphPlan*

• Pure STRIPS operators:
 conjunctive preconditions
 no negated preconditions
 no conditional effects
 no universal effects

• Finds “shortest parallel plan”
• Sound, complete and will terminate with

failure if there is no plan.

*Version in [Blum& Furst IJCAI 95, AIJ 97],

later extended to handle all these restrictions [Koehler et al 97]

11

© UW CSE AI Faculty 41

Graphplan

• Phase 1 - Graph Expansion
 Necessary (insufficient) conditions for plan

existence
 Local consistency of plan-as-CSP

• Phase 2 - Solution Extraction
 Variables

• action execution at a time point

 Constraints
• goals, subgoals achieved
• no side-effects between actions

© UW CSE AI Faculty 42

The Plan Graph

…

…

…

level 0 level 2 level 4 level 6

level 1 level 3 level 5

Note: a few noops missing for clarity

© UW CSE AI Faculty 43

Graph Expansion

Proposition level 0

initial conditions

Action level i

no-op for each proposition at level i-1

action for each operator instance whose

preconditions exist at level i-1

Proposition level i

effects of each no-op and action at level i

…

…

…

i-1 i i+10

© UW CSE AI Faculty 44

Mutual Exclusion

Two actions are mutex if
• one clobbers the other’s effects or preconditions

• they have mutex preconditions

Two proposition are mutex if
•one is the negation of the other

•all ways of achieving them are mutex

p

p

p

p

p

p

12

© UW CSE AI Faculty 45

Graphplan

• Create level 0 in planning graph
• Loop

 If goal contents of highest level (nonmutex)
 Then search graph for solution

• If find a solution then return and terminate

 Else extend graph one more level

© UW CSE AI Faculty 46

Searching for a Solution Plan

• Backward chain on the planning graph
• Achieve goals level by level
• At level k, pick a subset of non-mutex actions to

achieve current goals. Their preconditions become
the goals for k-1 level.

• Build goal subset by picking each goal and choosing
an action to add. Use one already selected if
possible. Do forward checking on remaining goals
(backtrack if can‟t pick non-mutex action)

© UW CSE AI Faculty 47

Searching for a Solution

If goals are present & non-mutex:
Choose action to achieve each goal

Add preconditions to next goal set

© UW CSE AI Faculty 48

Dinner Date

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

(:operator carry :precondition

:effect (:and (noGarbage) (:not (cleanHands)))

(:operator dolly :precondition

:effect (:and (noGarbage) (:not (quiet)))

(:operator cook :precondition (cleanHands)

:effect (dinner))

(:operator wrap :precondition (quiet)

:effect (present))

13

© UW CSE AI Faculty 49

Planning Graph
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop
© UW CSE AI Faculty 50

Are there any exclusions?
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop

© UW CSE AI Faculty 51

Do we have a solution?
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

cleanH

quiet

0 Prop 1 Action 2 Prop 3 Action 4 Prop
© UW CSE AI Faculty 52

Extend the Planning Graph
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop

14

© UW CSE AI Faculty 53

Searching Backwards
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop
© UW CSE AI Faculty 54

One (of 4) Possibilities
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop

© UW CSE AI Faculty 55

One (of 4) possibilities
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop
© UW CSE AI Faculty 56

Observation 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

15

© UW CSE AI Faculty 57

Observation 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

© UW CSE AI Faculty 58

Observation 3

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…

© UW CSE AI Faculty 59

Observation 4

Action mutex relationships monotonically decrease

p

q

…
B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

© UW CSE AI Faculty 60

Observation 5

Planning Graph „levels off‟.
• After some time k all levels are identical
• Because it‟s a finite space, the set of literals

never decreases and mutexes don‟t reappear.

16

© UW CSE AI Faculty 61

The Last Word on Planning: SATPlan

• Idea: test the satisfiability of the logical sentence:

(initial state) (all possible action descriptions for t
steps) (goal achieved at step t)

• Create and test sentence for each t, t = 0, 1, 2, …, Tmax

• Action descriptions include

1. Successor-state axioms from situation calculus
(superscript denotes t)

E.g., At(P1,JFK)1 (At(P1,SFO)0 Fly(P1,SFO,JFK)0)
(At(P1,JFK)0 ¬Fly(P1,JFK,SFO)0)

2. Precondition axioms E.g., Fly(P1,SFO,JFK)0 At(P1,SFO)0

3. State constraints.

E.g., p, x, y, t (x y) ¬(At(p,x)t At(p,y)t)

© UW CSE AI Faculty 62

Planning using SATPlan
• Sentence to be tested (for a particular t):

(initial state) (all possible action descriptions) (goal)

• A model will assign true to actions that are part
of correct plan and false to other actions

 If no plan exists, sentence will be
unsatisfiable

• Use SAT solver such as DPLL or WalkSAT to
test satisfiability (and find plan if one exists)

• SATPlan can handle large planning problems

 E.g., Up to 30-step plans in blocks world

© UW CSE AI Faculty 63

Some Applications of Planning
• Assembly line planning at Hitachi
• Software procurement planning at Price

Waterhouse
• Back-axle assembly planning at Jaguar Cars
• Logistics planning in the US Navy
• Scheduling mission-command sequences for

satellites
• Observation planning for Hubble telescope
• Spacecraft control for Deep Space One

probe
• Etc.

© UW CSE AI Faculty 64

Planning Summary

 Problem solving algorithms that operate on explicit
propositional representations of states and actions.

 Make use of specific heuristics.
 STRIPS: restrictive propositional language
 State-space search: forward (progression) /

backward (regression) search
 Partial order planners search space of plans from

goal to start, adding actions to achieve goals
 GraphPlan: Generates planning graph to guide

backwards search for plan
 SATplan: Converts planning problem into

propositional axioms. Uses SAT solver to find plan.

