
1

Inference in Propositional Logic
(and Intro to SAT)

CSE 473

© D. Weld, D. Fox 2

Today

• Inference Algorithms
 As search
 Systematic & stochastic

• Themes
 Expressivity vs.
 Tractability

© D. Weld, D. Fox 3

Reasoning Tasks
• Model finding (SAT)

KB = background knowledge
S = description of problem
Show (KB S) is satisfiable
A kind of constraint satisfaction

• Deduction
S = question

Prove that KB |= S
Two approaches:

1. Rules to derive new formulas from old
2.Show (KB S) is unsatisfiable

© D. Weld, D. Fox 4

Inference 1: Forward Chaining

Forward (& Backward) Chaining
Based on rule of modus ponens

If know P1, …, Pn & know (P1 ... Pn)=> Q
Then can conclude Q

Pose as Search through Problem Space?
States?
Operators?

Is it sound? Complete?
Model finding (SAT), or deduction (proof)?

2

© D. Weld, D. Fox 5

Special Syntactic Forms: CNF

•General Form:
((q r)  s)) (s t)

•Conjunctive Normal Form (CNF)
(q r s) (s t)
Set notation: { (q, r, s), (s, t) }
empty clause () = false

© D. Weld, D. Fox 6

Inference 2: Resolution
[Robinson 1965]

{ (p), (p) } |-R ()

Correctness

If S1 |-R S2 then S1 |= S2
Refutation Completeness:

If S is unsatisfiable then S |-R ()

© D. Weld, D. Fox 7

If the unicorn is mythical, then it is immortal, but
if it is not mythical, it is a mammal. If the
unicorn is either immortal or a mammal, then it
is horned.

Prove: the unicorn is horned.

Resolution

(A H)

(M A)

(H) (I H)

(M)

(M I)(I)(A)

(M)

()

M = mythical
I = immortal
A = mammal
H = horned

Model finding, or deduction?
© D. Weld, D. Fox 8

Inference 3: Model Enumeration

Enumerate every possible world w.
For each w :
 Check whether S is true in w.
 If yes, we’re done  S is satisfiable.

If no w satisfies S, S is unsatisfiable.

Model finding, or deduction?
View as Search?
Critique?

3

© D. Weld, D. Fox 9

Inference 4: DPLL
(Enumeration of Partial Models)

[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll(pa){
if (pa makes F unsatisfiable) return

false;
if (pa is a full assignment) return

true;
choose P in F;
if (dpll(pa U {P=0})) return true;
return dpll(pa U {P=1});

}
Returns true if F is satisfiable, false otherwise

© D. Weld, D. Fox 10

a

b b

c
c

(a b c)

(a ¬b)

(a ¬c)

(¬a c)

DPLL Version 1

© D. Weld, D. Fox 11

Improving DPLL

• We can intelligently rearrange our clauses at
each step of the search to improve speed:
 - Remove clauses containing true literals.
 - Remove false literals from remaining clauses.

© D. Weld, D. Fox 12

Improving DPLL

• Pure Literals
 A symbol that always appears with same sign
 {{a b c}{ c d e}{ a b e}{d b}{e a c}}

• Unit Literals
 A literal that appears in a singleton clause
 {{ b c}{ c}{a b e}{d b}{e a c}}

Might as well set it true! And simplify
 {{a b c} { a b e} {e a c}}

 Might as well set it true! And simplify
 {{ b} {a b e}{d b}}
 {{d}}

4

© D. Weld, D. Fox 13

a

b c

c

(a b c)

(a ¬b)

(a ¬c)

(¬a c)

DPLL (for real)

© D. Weld, D. Fox 14

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable
 Likely to create many unit clauses

• MOM’s heuristic:
 Most occurrences in clauses of minimum length

• Can we eliminate the exponential search
time?

© D. Weld, D. Fox 15

Success of DPLL

• 1962 – DPLL invented
• 1992 – 300 propositions
• 1997 – 600 propositions (satz)
• 2002 – 1,000,000 propositions (zChaff)

Chaff – fastest complete SAT solver
Created by 2 Princeton undergrads,
for a summer project!

© D. Weld, D. Fox 16

Inference 5: WalkSat
• Local search over space of complete truth
assignments

 With probability P: flip any variable in any
unsatisfied clause

 With probability (1-P): flip best variable in
any unsat clause
• Like fixed-temperature simulated annealing

• Faster than DPLL
• Completeness?

5

© D. Weld, D. Fox

Random 3-SAT Performance

• Random 3-SAT
 sample uniformly from

space of all possible 3-
clauses

 n variables, m clauses

• Which are the hard
instances?

 around m/n = 4.3

© D. Weld, D. Fox 18

Random 3-SAT

• Varying problem size, n

• Complexity peak
appears to be largely
invariant of algorithm
 -backtracking algorithms

like DPLL
 -local search procedures

like WALKSAT

• What’s so special about
4.3?

© D. Weld, D. Fox 19

Random 3-SAT

• Complexity peak
coincides with solubility
transition

 m/n < 4.3 problems
under-constrained and
SAT

 m/n > 4.3 problems over-
constrained and UNSAT

 m/n=4.3, problems on
“knife-edge” between
SAT and UNSAT

© D. Weld, D. Fox 20

Real-World Phase Transition
Phenomena

• Many NP-hard problem distributions show
phase transitions -
 job shop scheduling problems
 TSP instances from TSPLib
 exam timetables @ Edinburgh
 Boolean circuit synthesis
 Latin squares (aka sports scheduling)

• Hot research topic: predicting hardness of a
given instance, & using hardness to control
search strategy (Horvitz, Kautz, Ruan 2001-3)

6

© D. Weld, D. Fox 21

Summary: Algorithms

• Forward Chaining
• Resolution
• Model Enumeration
• Enumeration of Partial Models (DPLL)
• Walksat

© D. Weld, D. Fox 22

Analysis of Propositional Logic
Inference / SAT

• Expressiveness?

 NP-Complete in general
 Completeness / speed tradeoff
 Horn clauses, binary clauses are special,
 more efficient cases

• Tractability

 Expressive but awkward
 No notion of objects, properties, or relations
 Number of propositions is fixed

