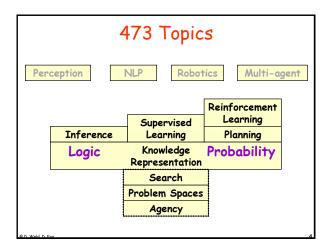
Knowledge Representation I (Propositional Logic)

CSE 473


Some KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Semantic Networks
- Concept Description Languages
- Nonmonotonic Logic

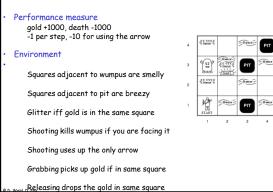
In Fact...

All popular knowledge representation systems are equivalent to (or a subset of) Logic

- Either Propositional Logic
- Or Predicate Calculus
- **Probability Theory**

Knowledge bases

— domain-independent algorithms
— domain-specific content

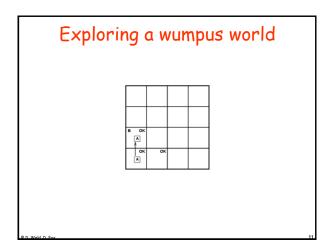

- Knowledge base = set of sentences in a formal language
 Declarative approach to building an agent (or other system): Tell it what it needs to know
 Then it can Ask itself what to do - answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level i.e., data structures in KB and algorithms that manipulate them

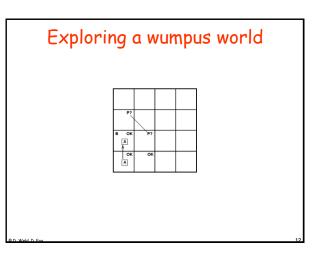
A simple knowledge-based agent

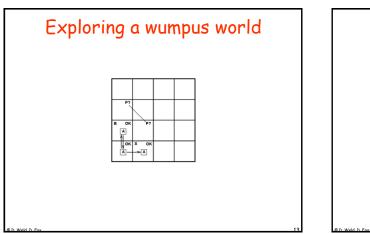
function KB-AGENT(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) action \leftarrow Ask(KB, MAKE-ACTION-QUERY(t)) TELL(KB, MAKE-ACTION-SENTENCE(action, t)) $t \leftarrow t + 1$ return action

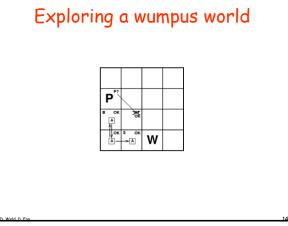

The agent must be able to: Represent states, actions, etc. Incorporate new percepts Update internal representations of the world Deduce hidden properties of the world Deduce appropriate actions

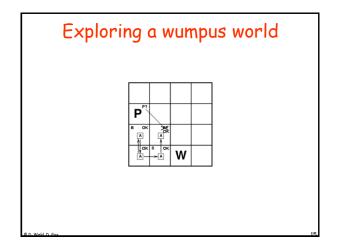
Wumpus World PEAS description

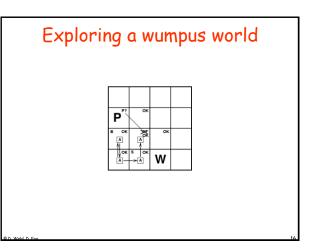

Wumpus world characterization

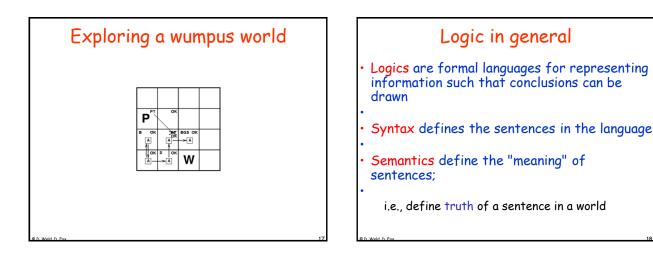

- Fully Observable?
- <u>Deterministic?</u>
- Episodic?
- Static?
- Discrete?
- <u>Single-agent?</u>

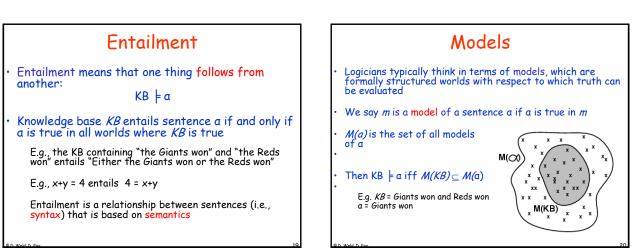


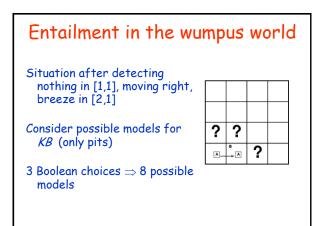

Exploring a wumpus world

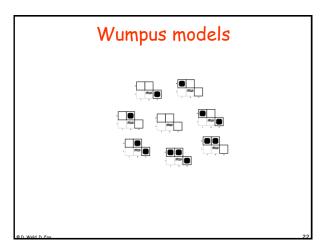


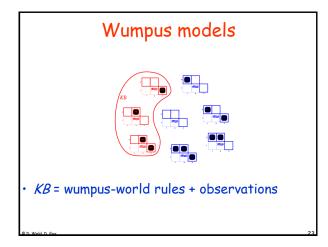


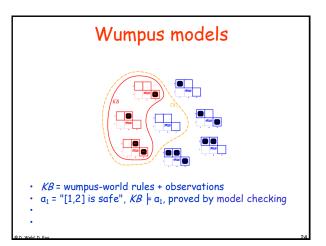


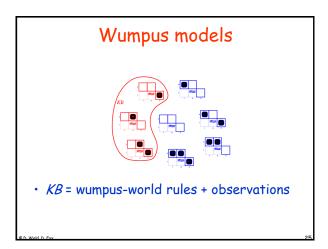


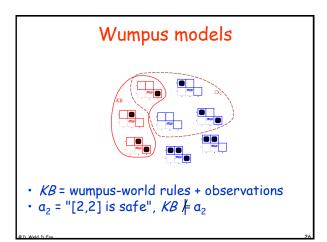


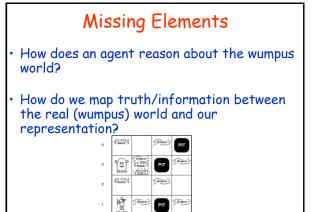


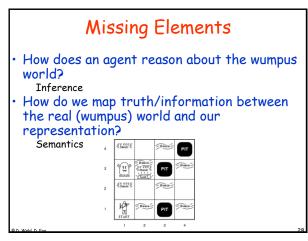


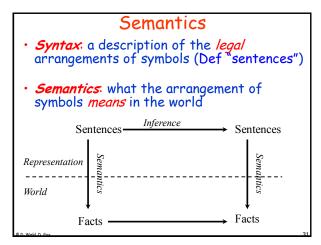




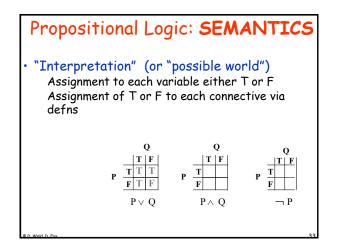


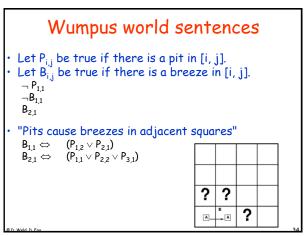






Inference


- $KB \mid_i a =$ sentence a can be derived from KB by procedure i Soundness: *i* is sound if whenever $KB \models a$, it is also true that KB ⊨ a
- Completeness: *i* is complete if whenever $KB \models a$, it is also true that $KB \mid_i a$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the KB.


Inference

- $KB \mid_i a$ = sentence a can be derived from KB by procedure *i* Soundness: *i* is sound if whenever $KB \vdash a$, it is also true that $KB \neq a$ "Prodecure i only infers things that are true."
- Completeness: *i* is complete if whenever $KB \models a$, it is also true that $KB \mid_i a$
 - "If something is true, procedure i will infer it."
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional Logic • Syntax Atomic sentences: True. False, P, Q, ... Connectives: $\land, \lor, \neg, \Rightarrow$ Semantics Truth Tables Inference Modus Ponens Resolution DPLL GSAT

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	1
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	<u>true</u>	<u>true</u>
false	true	false	false	false	true	true	<u>true</u>	true
false	true	false	false	true	false	false	false	true
	:	:	:	:	1	1	1	:
true	false	false						

Validity and satisfiability								
A sentence is valid if it is true in all models, e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$								
Validity is connected to inference via the Deduction Theorem: $KB \models a$ if and only if ($KB \Rightarrow a$) is valid								
A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C								
A sentence is unsatisfiable if it is true in no models e.g., A^¬A								
Satisfiability is connected to inference via the following: $KB \models a$ if and only if $(KB \land \neg a)$ is unsatisfiable								