Adversarial Search

CSE 473 University of Washington

Contents

- Board Games
- Minimax Search
- Alpha-Beta Search
- Games with an Element of Chance

Games as Search

- Components:
 - States
 - Initial state:
 - Successor function:
 - Terminal test:
 - Utility function:

Games as Search

Components:

- States: board configurations
- Initial state: the board position and which player will move
- Successor function: returns list of *(move, state)* pairs, each indicating a legal move and the resulting state
- Terminal test: determines when the game is over
- Utility function: gives a numeric value in terminal states (eg, -1, 0, +1 in chess for loss, tie, win)

Games as Search

- Components:
 - States: board configurations
 - Initial state: the board position and which player will move
 - Successor function: returns list of *(move, state)* pairs, each indicating a legal move and the resulting state
 - Terminal test: determines when the game is over
 Utility function: gives a numeric value in terminal states (eg, -1, 0, +1 in chess for loss, tie, win)
- Convention: first player is MAX, 2nd player is MIN
- State utility values from MAX's perspective
- Initial state and legal moves define the game tree

Properties of minimax

- · Complete?
- Optimal?
- Time complexity?
- Space complexity?

Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? O(b^m)

.

• Space complexity? O(bm) (depth-first exploration)

Good enough?

- Chess:
 - branching factor b≈35
 - game length m≈100
 - search space $b^m \approx 35^{100} \approx 10^{154}$
- The Universe:
 - number of atoms $\approx 10^{78}$
 - age ≈ 10²¹ milliseconds

Alpha-Beta Pruning

Alpha-Beta

MinVal(state, alpha, beta){

if (terminal(state)) return utility(state); for (s in successors(state)){ child = MaxVal(s,alpha,beta); beta = min(beta,child);

if (beta <=alpha) return child;

} return beta;

}

alpha = the highest (best) value for MAX along path beta = the lowest (best) value for MIN along path

Properties of a-B

- · Still optimal, pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = O(b^{m/2})
 > doubles depth of search
- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Good enough?

- Chess:
 - branching factor b≈35
 - game length m≈100
 - search space $b^{m/2} \approx 35^{50} \approx 10^{77}$
- The Universe:
 - number of atoms $\approx 10^{78}$
 - age ≈ 10²¹ milliseconds

Partial State Spaces

Strategies:

search to a fixed depth iterative deepening (most common) stop only at 'quiescent' nodes

Cutting off search

Does it work in practice?

 $b^m = 10^6$, $b=35 \rightarrow m=4$

4-ply lookahead is a hopeless chess player!

- 4-ply \approx human novice
- 8-ply ≈ typical PC, human master 12-ply ≈ Deep Blue, Kasparov
- ÷.

Transposition Tables

- Game trees contain repeated states
- In chess, e.g., the game tree may have 35100 nodes, but there are only 10⁴⁰ different board positions
- Similar to closed list in search, maintain a transposition table
- > Got its name from the fact that the same state is reached by a transposition of moves.

Game Playing in Practice

• Checkers: Solved! It has been shown that there is no strategy to beat the computer. The best you can get is a draw.

- Chess: Deep Blue defeated human world champion Gary Kasparov in a 6 game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply
- Othello: human champions refuse to play against computers because software is too good
- Go: human champions refuse to play against computers because software is too bad

Summary of Deterministic Games

- Basic idea: minimax -- too slow for most games
- Alpha-Beta pruning can increase max depth by factor up to 2
- Limited depth search may be necessary
- Static evaluation functions necessary for limited depth search and help alpha-beta
- Opening game and End game databases can help
- Computers can beat humans in some games (checkers, chess, othello) but not in others (Go)

