
1

Adversarial Search

CSE 473
University of Washington

© D. Weld, D. Fox 2

Contents

• Board Games

• Minimax Search

• Alpha-Beta Search

• Games with an Element of Chance

© D. Weld, D. Fox 3

Games Overview

chess, 
checkers, go, 

othello

backgammon, 
monopoly

bridge, 
poker, 

scrabble
Imperfect
information

Perfect
information

deterministic chance

© D. Weld, D. Fox 4

Games & Game Theory

• When there is more than one agent, the future 
is not anymore easily predictable for the agent

• In competitive environments (conflicting goals), 
adversarial search becomes necessary

• In AI, we usually consider special type of games: 

 board games, which can be characterized as
deterministic, turn-taking, two-player, zero-sum
games with perfect information



2

© D. Weld, D. Fox 5

Games as Search

 Components:
 States: 
 Initial state: 

 Successor function:

 Terminal test: 
 Utility function:

© D. Weld, D. Fox 6

Games as Search

 Components:
 States: board configurations
 Initial state: the board position and which player will 

move
 Successor function: returns list of (move, state) pairs, 

each indicating a legal move and the resulting state
 Terminal test: determines when the game is over
 Utility function: gives a numeric value in terminal states 

(eg, -1, 0, +1 in chess for loss, tie, win)

© D. Weld, D. Fox 7

Games as Search

 Components:
 States: board configurations
 Initial state: the board position and which player will 

move
 Successor function: returns list of (move, state) pairs, 

each indicating a legal move and the resulting state
 Terminal test: determines when the game is over
 Utility function: gives a numeric value in terminal states 

(eg, -1, 0, +1 in chess for loss, tie, win)

 Convention: first player is MAX, 2nd player is 
MIN

 State utility values from MAX’s perspective
 Initial state and legal moves define the game tree

© D. Weld, D. Fox 8

Tic-Tac-Toe Example



3

© D. Weld, D. Fox 9 © D. Weld, D. Fox 10

© D. Weld, D. Fox 11 © D. Weld, D. Fox 12



4

© D. Weld, D. Fox 13 © D. Weld, D. Fox 14

© D. Weld, D. Fox 15 © D. Weld, D. Fox 16



5

© D. Weld, D. Fox 17

Properties of minimax

• Complete?
•

• Optimal?

• Time complexity?
•

• Space complexity?

© D. Weld, D. Fox 18

Properties of minimax

• Complete? Yes (if tree is finite)
•

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)
•

• Space complexity? O(bm) (depth-first exploration)
•

© D. Weld, D. Fox 19

Good enough?

 Chess: 
 branching factor b≈35
 game length m≈100
 search space bm ≈ 35100 ≈ 10154

 The Universe:
 number of atoms ≈ 1078

 age ≈ 1021 milliseconds

© D. Weld, D. Fox 20

Alpha-Beta Pruning



6

© D. Weld, D. Fox 21 © D. Weld, D. Fox 22

© D. Weld, D. Fox 23 © D. Weld, D. Fox 24



7

© D. Weld, D. Fox 25 © D. Weld, D. Fox 26

© D. Weld, D. Fox 27 © D. Weld, D. Fox 28



8

© D. Weld, D. Fox 29 © D. Weld, D. Fox 30

© D. Weld, D. Fox 31 © D. Weld, D. Fox 32



9

© D. Weld, D. Fox 33 © D. Weld, D. Fox 34

© D. Weld, D. Fox 35 © D. Weld, D. Fox 36

Alpha-Beta

MaxVal(state, alpha, beta){
if (terminal(state)) return utility(state);
for (s in successors(state)){

child = MinVal(s,alpha,beta);
alpha = max(alpha,child);
if (alpha>=beta) return child;

}
return alpha;

}
alpha = the highest (best) value for MAX along path

beta = the lowest (best) value for MIN along path



10

© D. Weld, D. Fox 37

Alpha-Beta

MinVal(state, alpha, beta){
if (terminal(state)) return utility(state);
for (s in successors(state)){

child = MaxVal(s,alpha,beta);
beta = min(beta,child);
if (beta <=alpha) return child;

}
return beta;

}
alpha = the highest (best) value for MAX along path

beta = the lowest (best) value for MIN along path

© D. Weld, D. Fox 38

Properties of α-β

• Still optimal, pruning does not affect final result

• Good move ordering improves effectiveness of 
pruning

•

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning about 
which computations are relevant (a form of 
metareasoning)

•

© D. Weld, D. Fox 39

Good enough?

 Chess: 
 branching factor b≈35
 game length m≈100
 search space bm/2 ≈ 3550 ≈ 1077

 The Universe:
 number of atoms ≈ 1078

 age ≈ 1021 milliseconds

© D. Weld, D. Fox 40

Partial State Spaces

• Strategies:
 search to a fixed depth
 iterative deepening (most common)
 stop only at ‘quiescent’ nodes



11

© D. Weld, D. Fox 41 © D. Weld, D. Fox 42

Evaluation Function

 When search space is too large, create game tree up 
to a certain depth only. 

 Art is to evaluate positions that are not terminal
states.

 Example of simple evaluation criteria in chess:

 Material worth: pawn=1, knight =3, rook=5, queen=9.

 Other: king safety, good pawn structure

 Rule of thumb: 3-point advantage = certain victory

eval(s) =
w1 * material(s) +
w2 * mobility(s) +
w3 * king safety(s) +
w4 * center control(s) + ...

© D. Weld, D. Fox 43

Cutting off search

 Does it work in practice?


bm = 106, b=35  m=4


 4-ply lookahead is a hopeless chess player!


 4-ply ≈ human novice
 8-ply ≈ typical PC, human master
 12-ply ≈ Deep Blue, Kasparov


© D. Weld, D. Fox 44

Transposition Tables

• Game trees contain repeated states

• In chess, e.g., the game tree may have 35100 nodes, 
but there are only 1040 different board positions

• Similar to closed list in search, maintain a 
transposition table

Got its name from the fact that the same state is 
reached by a transposition of moves.



12

© D. Weld, D. Fox 45

Game Playing in Practice

 Checkers: Solved! It has been shown that there is no 
strategy to beat the computer. The best you can get is a draw.

 Chess: Deep Blue defeated human world champion Gary
Kasparov in a 6 game match in 1997. Deep Blue searches
200 million positions per second, uses very sophisticated
evaluation, and undisclosed methods for extending some
lines of search up to 40 ply

 Othello: human champions refuse to play against
computers because software is too good

 Go: human champions refuse to play against
computers because software is too bad

© D. Weld, D. Fox 46

Summary of Deterministic Games
• Basic idea: minimax -- too slow for most games

• Alpha-Beta pruning can increase max depth by 
factor up to 2

• Limited depth search may be necessary

• Static evaluation functions necessary for limited 
depth search and help alpha-beta

• Opening game and End game databases can help

• Computers can beat humans in some games 
(checkers, chess, othello) but not in others (Go)

© D. Weld, D. Fox 47

Other Games

chess, 
checkers, go, 

othello

backgammon, 
monopoly

bridge, 
poker, 

scrabble
Imperfect
information

Perfect
information

deterministic chance

© D. Weld, D. Fox 48

Games that Include an Element of 
Chance

White has just rolled 6-5 and has 4 legal moves.



13

© D. Weld, D. Fox 49

Game Tree for Games with an 
Element of Chance

 In addition to MIN- and MAX nodes, we need
chance nodes (e.g., for rolling dice).

 Search costs increase: Instead of O(bd), we get 
O((bn)d), where n is the number of chance outcomes.

© D. Weld, D. Fox 50

Imperfect Information

• E.g. card games, where opponents’ initial 
cards are unknown

• Idea: For all deals consistent with what you 
can see
 compute the minimax value of available actions 

for each of possible deals
 compute the expected value over all deals


