
1

Heuristics
Local Search

CSE 473
University of Washington

© D. Weld, D. Fox 2

Admissable Heuristics
• f(x) = g(x) + h(x)
• g: cost so far
• h: underestimate of remaining costs

Where do heuristics come from?
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Relaxed Problems
• Derive admissible heuristic from exact cost 

of a solution to a relaxed version of problem
 For transportation planning, relax requirement 

that car has to stay on road  Euclidean dist
 For blocks world, distance = # move operations 

heuristic = number of misplaced blocks
 What is relaxed problem?

# out of place = 2,   true distance to goal = 3

• Cost of optimal soln to relaxed problem < 
cost of optimal soln for real problem
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Simplifying Integrals

vertex = formula
goal = closed form formula without integrals
arcs = mathematical transformations

heuristic = number of integrals still in formula

what is being relaxed?

1

1

n

n x
x dx

n



2

© D. Weld, D. Fox 5

Traveling Salesman Problem
• Problem Space

• Heuristic?

States = partial path (not nec. connected)
Operator = add an edge
Start state = empty path
Goal = complete path

What can be
Relaxed?
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Heuristics for eight puzzle

7   2   3

8   3

5   1   6
1   2   3

7   8

4   5   6

start goal



• What can we relax?
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Importance of Heuristics

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

• h1 = number of tiles in wrong place
• h2 = distances of tiles from correct loc

7    2     3

8    5

4    1     6
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Need More Power!

Performance of Manhattan Distance Heuristic
 8 Puzzle < 1 second
 15 Puzzle 1 minute
 24 Puzzle 65000 years

Need even better heuristics!

Adapted from Richard Korf presentation
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Pattern Databases

• Pick any subset of tiles
• E.g., 3, 7, 11, 12, 13, 14, 15

• Precompute a table 
 Optimal cost of solving just these tiles
 For all possible configurations

• 57 Million in this case

 Use breadth first search back from goal state
• State = position of just these tiles (& blank)

Adapted from Richard Korf presentation

[Culberson & Schaeffer 1996]
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Using a Pattern Database

• As each state is generated
 Use position of chosen tiles as index into DB
 Use lookup value as heuristic, h(n)

 Admissible?

Adapted from Richard Korf presentation
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Combining Multiple Databases

• Can choose another set of tiles
 Precompute multiple tables

• How combine table values?

• E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (dif subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDDFS

Adapted from Richard Korf presentation
© D. Weld, D. Fox 13

Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values

Adapted from Richard Korf presentation



4

© D. Weld, D. Fox 14

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table

• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up heuristic values for each set
 Can add values without overestimating!

 Manhattan distance is a special case of this idea 
where each set is a single tile

Adapted from Richard Korf presentation

9  10  11 12

13 14  15

1   2   3   4

5  6   7   8
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Performance

• 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 

15 Puzzles optimally in 30 milliseconds

• 24 Puzzle: 12 million x speedup vs Manhattan 
 IDA* can solve random instances in 2 days.
 Requires 4 DBs as shown

• Each DB has 128 million entries

 Without PDBs: 65000 years

Adapted from Richard Korf presentation
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Local Search Algorithms

• In many optimization problems, the path to the goal 
is irrelevant; the goal state itself is the solution

•

• State space = set of "complete" configurations

• Find configuration satisfying constraints, e.g., n-
queens

• In such cases, we can use local search algorithms
that keep a single "current" state, try to improve it

•
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Hill Climbing
• Idea

 Always choose best child; no 
backtracking

 Beam search with |queue| = 1

• Problems?

 Local maxima

 Plateaus

 Diagonal ridges 

“Gradient ascent”
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Stochastic Hill Climbing 

• Randomly disobeying heuristic
• Random restarts
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Simulated Annealing
• Objective: avoid local minima
• Technique:

 For the most part use hill climbing
 When no improvement possible

• Choose random neighbor
• Let a be the decrease in quality
• Move to neighbor with probability e -a/T

 Reduce “temperature” (T) over time

• Pros & cons
 Optimal?

temp

 If T decreased slowly enough, will reach optimal state
• Widely used
• See also

 WalkSAT
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No

O(b^d)

O(b + N)

Local Beam Search

• Idea
 Best first but only keep N best items on priority 

queue

• Evaluation
 Complete?

 Time Complexity?

 Space Complexity?
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Genetic Algorithms 

• Start with random population
 Representation serialized 
 States are ranked with “fitness function”

• Produce new generation
 Select random pair(s): 

• probability ~ fitness

 Randomly choose “crossover point”
• Offspring mix halves

 Randomly mutate bits
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Genetic algorithms

• Fitness function: number of non-attacking pairs of 
queens (min = 0, max = 8 × 7/2 = 28)

•
• 24/(24+23+20+11) = 31%
•
• 23/(24+23+20+11) = 29% etc
•
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Genetic algorithms


