
1

Heuristics
Local Search

CSE 473
University of Washington

© D. Weld, D. Fox 2

Admissable Heuristics
• f(x) = g(x) + h(x)
• g: cost so far
• h: underestimate of remaining costs

Where do heuristics come from?

© D. Weld, D. Fox 3

Relaxed Problems
• Derive admissible heuristic from exact cost

of a solution to a relaxed version of problem
 For transportation planning, relax requirement

that car has to stay on road  Euclidean dist
 For blocks world, distance = # move operations

heuristic = number of misplaced blocks
 What is relaxed problem?

out of place = 2, true distance to goal = 3

• Cost of optimal soln to relaxed problem <
cost of optimal soln for real problem

© D. Weld, D. Fox 4

Simplifying Integrals

vertex = formula
goal = closed form formula without integrals
arcs = mathematical transformations

heuristic = number of integrals still in formula

what is being relaxed?

1

1

n

n x
x dx

n

2

© D. Weld, D. Fox 5

Traveling Salesman Problem
• Problem Space

• Heuristic?

States = partial path (not nec. connected)
Operator = add an edge
Start state = empty path
Goal = complete path

What can be
Relaxed?

© D. Weld, D. Fox 6

Heuristics for eight puzzle

7 2 3

8 3

5 1 6
1 2 3

7 8

4 5 6

start goal



• What can we relax?

© D. Weld, D. Fox 7

Importance of Heuristics

D IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

• h1 = number of tiles in wrong place
• h2 = distances of tiles from correct loc

7 2 3

8 5

4 1 6

© D. Weld, D. Fox 8

Need More Power!

Performance of Manhattan Distance Heuristic
 8 Puzzle < 1 second
 15 Puzzle 1 minute
 24 Puzzle 65000 years

Need even better heuristics!

Adapted from Richard Korf presentation

3

© D. Weld, D. Fox 10

Pattern Databases

• Pick any subset of tiles
• E.g., 3, 7, 11, 12, 13, 14, 15

• Precompute a table
 Optimal cost of solving just these tiles
 For all possible configurations

• 57 Million in this case

 Use breadth first search back from goal state
• State = position of just these tiles (& blank)

Adapted from Richard Korf presentation

[Culberson & Schaeffer 1996]

© D. Weld, D. Fox 11

Using a Pattern Database

• As each state is generated
 Use position of chosen tiles as index into DB
 Use lookup value as heuristic, h(n)

 Admissible?

Adapted from Richard Korf presentation

© D. Weld, D. Fox 12

Combining Multiple Databases

• Can choose another set of tiles
 Precompute multiple tables

• How combine table values?

• E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (dif subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDDFS

Adapted from Richard Korf presentation
© D. Weld, D. Fox 13

Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values

Adapted from Richard Korf presentation

4

© D. Weld, D. Fox 14

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table

• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up heuristic values for each set
 Can add values without overestimating!

 Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

© D. Weld, D. Fox 15

Performance

• 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves

15 Puzzles optimally in 30 milliseconds

• 24 Puzzle: 12 million x speedup vs Manhattan
 IDA* can solve random instances in 2 days.
 Requires 4 DBs as shown

• Each DB has 128 million entries

 Without PDBs: 65000 years

Adapted from Richard Korf presentation

© D. Weld, D. Fox 16

Local Search Algorithms

• In many optimization problems, the path to the goal
is irrelevant; the goal state itself is the solution

•

• State space = set of "complete" configurations

• Find configuration satisfying constraints, e.g., n-
queens

• In such cases, we can use local search algorithms
that keep a single "current" state, try to improve it

•

© D. Weld, D. Fox 17

Hill Climbing
• Idea

 Always choose best child; no
backtracking

 Beam search with |queue| = 1

• Problems?

 Local maxima

 Plateaus

 Diagonal ridges

“Gradient ascent”

5

© D. Weld, D. Fox 18

Stochastic Hill Climbing

• Randomly disobeying heuristic
• Random restarts

© D. Weld, D. Fox 19

Simulated Annealing
• Objective: avoid local minima
• Technique:

 For the most part use hill climbing
 When no improvement possible

• Choose random neighbor
• Let a be the decrease in quality
• Move to neighbor with probability e -a/T

 Reduce “temperature” (T) over time

• Pros & cons
 Optimal?

temp

 If T decreased slowly enough, will reach optimal state
• Widely used
• See also

 WalkSAT

© D. Weld, D. Fox 21

No

O(b^d)

O(b + N)

Local Beam Search

• Idea
 Best first but only keep N best items on priority

queue

• Evaluation
 Complete?

 Time Complexity?

 Space Complexity?

© D. Weld, D. Fox 22

Genetic Algorithms

• Start with random population
 Representation serialized
 States are ranked with “fitness function”

• Produce new generation
 Select random pair(s):

• probability ~ fitness

 Randomly choose “crossover point”
• Offspring mix halves

 Randomly mutate bits

6

© D. Weld, D. Fox 23

Genetic algorithms

• Fitness function: number of non-attacking pairs of
queens (min = 0, max = 8 × 7/2 = 28)

•
• 24/(24+23+20+11) = 31%
•
• 23/(24+23+20+11) = 29% etc
•

© D. Weld, D. Fox 24

Genetic algorithms

