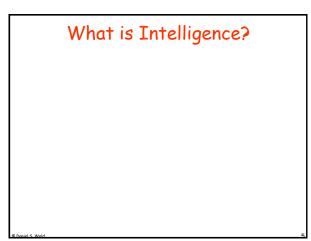


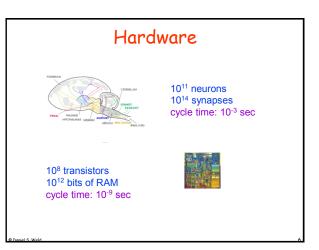
Goals of this Course

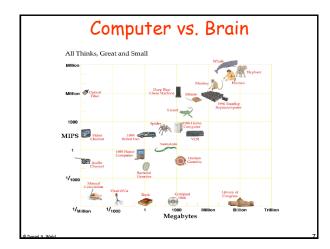
 To introduce you to a set of key: Paradigms & Techniques
 Teach you to identify when & how to use Agents & Problem Spaces Heuristic search Constraint satisfaction Knowledge representation Planning Uncertainty Machine learning Dynamic Bayesian networks & particle filters Robotics

AI as Science

Where did the *physical universe* come from? And what laws guide its dynamics?


How did *biological life* evolve? And how do living organisms function?


What is the nature of *intelligent thought?*

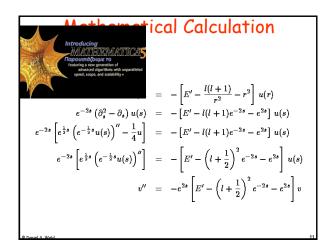

AI as Engineering

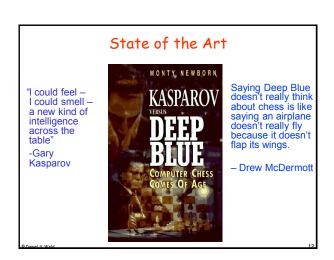
How can we make software systems more powerful and easier to use?

Speech & intelligent user interfaces Autonomic computing Mobile robots, softbots & immobots Data mining Medical expert systems...

Projection

·In near future computers will have


As many processing elements as our brain, But far fewer interconnections Much faster updates.


•Fundamentally different hardware Requires fundamentally different algorithms! Very much an open question.

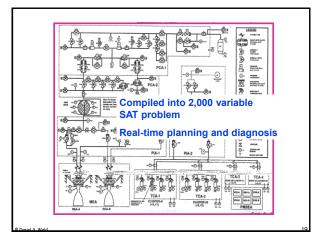
Dimensions of the AI Definition

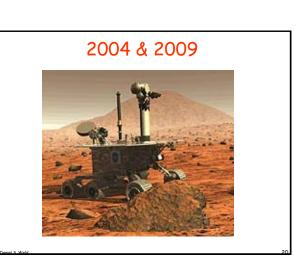
human-like vs. rational

hought Systems that think like humans	Systems that think rationally
s. Systems that act like humans	Systems that act rationally

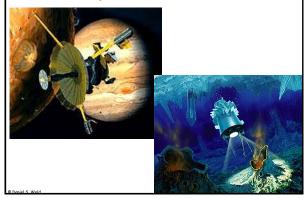
Autonomous Systems

- In the 1990's there was a growing concern that work in classical AI ignored crucial scientific questions:
 - How do we integrate the components of intelligence (*e.g.* learning & planning)? How does perception interact with reasoning?
 - How does the demand for real-time performance in a complex, changing environment affect the architecture of intelligence?


- Provide a standard problem where a wide range of technologies can be integrated and examined
- By 2050, develop a team of fully autonomous humanoid robots that can win against the human world champion team in soccer.



Software Robots (softbots)


- Softbots: 'intelligent' program that uses software tools on a person's behalf.
- Sensors = LS, Google, etc.
- Effectors = RM, ftp, Amazon.com
- Software: not physical but not simulated.
 Active: not a help system (softbot safety!)

Europa Mission ~ 2018

Limits of AI Today

Today's successful AI systems

operate in well-defined domains employ narrow, specialize knowledge

• Commonsense Knowledge

needed in complex, open-ended worlds • Your kitchen vs. GM factory floor understand unconstrained Natural Language

Role of Knowledge in Natural Language Understanding

• WWW Information Extraction

Speech Recognition

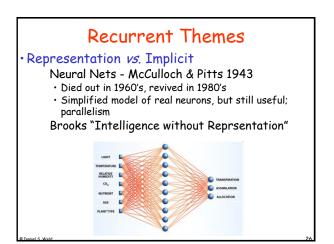
"word spotting" feasible today continuous speech - rapid progress • Translation / Understanding

limited progress

The spirit is willing but the flesh is weak. (English)

The vodka is good but the meat is rotten. (Russian)

How the heck do we understand?


- John gave Pete a book.
- John gave Pete a hard time.
- John gave Pete a black eye.
- John gave in.
- John gave up.
- John's legs gave out beneath him.
- It is 300 miles, give or take 10.

How to Get Commonsense?

• CYC Project (Doug Lenat, Cycorp)

Encoding 1,000,000 commonsense facts about the world by hand Coverage still too spotty for use! (But see Digital Aristotle project)

- Machine Learning
- Open Mind
- Mining from Wikipedia & the Web
- . ???

Recurrent Themes

· Logic vs. Probability

In 1950's, logic dominates (McCarthy, ... • attempts to extend logic "just a little" (e.g. nomon) 1988 - Bayesian networks (Pearl) • efficient computational framework Today's hot topic: combining probability & FOL

Recurrent Themes

- Combinatorial Explosion
- Micro-world successes are hard to scale up.
- How to organize and accumulate large amounts of knowledge?

Historical Perspective

- (4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski formalizing the laws of logical reasoning
- (16th C+) Gerc¹---- Pierre Femat,
- James Bernot formalizing p • (1950+) Alan Claude Shann thinking as c • (1956) John / Herbert Simon, Allen Newell
- start of the field of AI

Logistics:

- See website www.cs.washington.edu/education/courses/cse473/08au
- Two small projects Othello TBD

Grading:

60% homeworks and mini-projects 10% midterm 20% final 10% class participation, extra credit, etc

For You To Do

- Get on class mailing list www.cs.washington.edu/education/courses/cse473/08au
- Dan's Suggestion: Start reading Ch 2 in text Ch 1 is good, but optional

•