INFERENCE IN BAYESIAN NETWORKS

CHAPTER 14.4-5
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Outline

> Exact inference by enumeration
> Exact inference by variable elimination
{ Approximate inference by stochastic simulation

> Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(X;|E =e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=¢) = P(X;|[E=¢e)P(X;|X;, E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) | ®

=P(B,j,m)/P(j,m) ;,01
= aP(B, j,m)
= v 2, 2, P(B.e,a,j,m) @ @

Rewrite full joint entries using product of CPT entries:
P(Bl|j, m)

= 2, 2, P(B )P‘ Pla|B, {9) (jia mia)

= &P(B) 2. Ple) 2, Pla|B,e)P(jla)P (m} )

Recursive depth-first enumeration: O(n) space, O(d") time
p \ P C
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Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) « a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) + ENUMERATE-ALL(VARS[br], e)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
YV FIrsT(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e)
else return ©, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with ¥ = y
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Evaluation tree

P(ma) Pmi—a) P(m|a) Pm|—a)
.70 .01 70 01

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P{ma) for each value of e
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

—aP(B)%. P P >z£<a38 e) P(jla) P(m]a)

- <f> P(¢)S.P(al B, ) P(jla) fula)
maP( Ee)ma (a|B,e)f;(a)fula)
(

= &P(B) {\)Zaf‘x( , 0, {))ff(a\)fﬁf(a>
— oP(B )Z(P eV fararlh, () (sum out A)
= aP (D) fra71(b) (sum out E)

= o fp(b) X fpas(d)
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Z;rflx e X fe= X Xf%EfoEX e X fr=hx e X iX [y

assuming fi,...., f; do not depend on X

; P

Pointwise product of factors f; and fs:
flr, . ziny ) X By oo e 21, 21)
— j(ﬁjla vy Ly Y, - s Yky 215 - - ;Zf)
Eg., fila,b)x flb,c) = fla,b,c)
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Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1,...,X},)

factors < []; vars— REVERSE(VARS|[bn])
for each ver in vars do

factors — [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors «— SuM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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Irrelevant variables

Consider the query P(JohnCalls|Burglary =true)

. £
PUIID) = aP(B) 5 P()s Plalb,e)PUI) S Plmla)— SBY

ST

Sum over m is identically 1; M is irrelevant to the query @ @

Thm 1: Y is irrelevant unless Y € Ancestors({ X} UE)

Here, X = JohnCualls, ¥.={Burglary}, and
Ancestors({ X} UE) = {Alarm, Farthquake}
so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E @ @
For P(JohnCalls|Alarm =true), both @
Burglary and Earthquake are irrelevant o @
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBvEc_C
2.CvDvA
3. BvCv-D
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution .5

2) Compute an approximate posterior probability 7

3) Show this converges to the true probability /7
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X1,..., X,,)

X «<— an event with n elements
fori = 1tondo
7; «+— a random sample from P(X; | parents(X;))
given the values of Parents(X;) in x
return x
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Example
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
t / ;
Sps(ay ... my,) = 1L_Plxiparents(X;)) = Play ... x,)

l.e., the true prior probability
E.g., Spsl(t, f,t,8) =0.5x0.9x0.8x0.9=0.324 = P(t, f, 1, 1)
Let Npg(xy...x,) be the number of samples generated for event 2, ...z,

Then we have

lim Pz, ... 2z,) = lim Npglay, ..., 2,)/N

p— SPS(E”E; . jﬁj‘;;‘)
= Pry...7T5)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: ]5(3:;} xR Plry.ooay)
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Rejection sampling

~

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
x + PRIOR-SAMPLE(bn)
if x is consistent with e then
N{a] <+ N[a]+1 where z is the value of X in x

return NORMALIZE(IN[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =tirue
Of these, 8 have Rain =true and 19 have Rain = false.

s

P(Rain|Sprinkler = true) = NORMALIZE((S, 19)) = (0.296,0.704)

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P(Xl|e) = aNpg(X, e) (algorithm defn.)
= Npg(X,e)/Npg(e) (normalized by Npg(e))
~ P(X,e)/Ple) (property of PRIORSAMPLE)
= P(Xe) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!

Chapter 14.4-5



Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to Ndo

X, < WEIGHTED-SAMPLE( bn)

Wz] «— W]z] + w where 1z is the value of X in x
return NORMALIZE(W/[X])

function WEIGHTED-SAMPLE(bn, ) returns an event and a weight

X «— an event with n elements; w+« 1
for 1= 1ton do
if X; has a value z; in e
then w« w x P(X;= z, | parents(X;))
else z; < a random sample from P(X; | parents(X;))
return x, w
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example

@

P(S|C)

w= 1.0x0.1 x0.99 = (.099

P(C)

Chapter 14.4-5

3




Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is
Swslz, e) = Hi _Plzlparents(Z;))
Note: pays attention to evidence in ancestors only
=> somewhere “in between” prior and
posterior distribution

Weight for a given sample z, e is
wiz, e) = Zﬂp(mpmcné?@? ))

Weighted sampling probability is
S ﬁ,fg(z; 8) w {_Z; e}
= I P(zlparents(Z)) TI7, Ple;| rents(E;))
= P(z,e) (by standard global semantfcs of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P(.X
local variables: N[ X, a vector of counts over X, initially zero

Z., the nonevidence variables in bn
x, the current state of the network, initially copied from e

e)

initialize x with random values for the variables in Y
for j=11to Ndo
for each Z; in Z do
sample the value of Z; in x from P{Z;|mb(Z;))
given the values of M B(Z;) in x
N[z] «— Nz] + 1 where z is the value of X in x
return NORMALIZE(N|X])

Can also choose a variable to sample at random each time
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The Markov chain

With Sprinkler =true, WetGrass = true, there are four states:

Wander about for a while, average what you see
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MCMC example contd.

Estimate P(Rain|Sprinkler =true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times ain is true and false in the samples.

E.g., visit 100 states
31 have Rain =true, 69 have Rain = false

FaN

P(Rain|Sprinkler =true, WetGrass = true)
= NORMALIZE((31,69)) = (0.31,0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P(alimb(X,)) = P(zi|parents(X;)11 7 eChitdren(x) (2

parents(Z;))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;imb(X;)) won't change much (law of large numbers)
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Summary

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC:
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables
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