
1

Review

• Best-first search uses an evaluation
function f(n) to select the next node for
expansion.

• Greedy best-first search uses f(n) = h(n).

• Greedy best first search is not optimal, not
complete, and has complexity O(bm).

2

Review

• A* search uses f(n) = g(n) + h(n).
• A* search is complete.
• A* is optimal if h(n) is admissable

h(n) <= h*(n) for true cost h*
– with tree search
– with graph search, if it discards the more

expensive of any 2 paths to the same node or
– if h(n) is consistent h(n) <= c(n,a,n’)+h(n’).

3

Performance of Heuristics

• How do we evaluate a heuristic function?
• effective branching factor

– If A* using h finds a solution at depth d using
N nodes, then the effective branching factor is

b | N ~ 1 + b + b + . . . + b
• Example

32 d
=

4

Table of Effective Branching Factors

b d N
2 2 7
2 5 63
3 2 13
3 5 364
3 10 88573
6 2 43
6 5 9331
6 10 72,559,411

How might we use this idea to evaluate a heuristic?

5

Complexity of A*
• Time complexity is exponential in the length of

the solution path unless
|h(n) – h(n*)| < O(log h*(n))
which we can’t guarantee.

• But, this is AI, computers are fast, and a good
heuristic helps a lot.

• Space complexity is also exponential, because it
keeps all generated nodes in memory.

6

Why not always use A*?

• Pros

• Cons

7

Iterative-Deepening A*
• Like iterative-deepening depth-first, but...
• Depth bound modified to be an f-limit

– Start with limit = h(start)
– Prune any node if f(node) > f-limit
– Next f-limit=min-cost of any node pruned

a

b

c

d

e

f
FL=15

FL=21

How would this work?

9

Local Search Algorithms and
Optimization Problems

• Complete state formulation
– For example, for the 8 queens problem, all 8 queens

are on the board and need to be moved around to get
to a goal state

• Equivalent to optimization problems often found
in science and engineering

• Start somewhere and try to get to the solution
from there

• Local search around the current state to decide
where to go next

10

Hill Climbing “Gradient ascent”

solution

Note: solutions shown
here as max not min.

Often used for numerical optimization problems.

How does it work?

11

AI Hill Climbing

Steepest-Ascent Hill Climbing
• current <- start state; if it’s a goal return it.
• loop

– initialize best_successsor
– for each operator
– apply operator to current to get next

• if next is a goal, return it and quit
• if next is better than best_successor, best_successor <- next

– if best-successor is better than current, current <- best_successor
• end loop

12

Hill Climbing Search

4 10 3 2 8

current

13

Hill Climbing Problems
Local maxima

Plateaus

Diagonal ridges

What is it sensitive to?
Does it have any advantages?

14

Solving the Problems
• Allow backtracking (What happens to complexity?)

• Stochastic hill climbing: choose at random from uphill
moves, using steepness for a probability

• Random restarts: “If at first you don’t succeed, try, try
again.”

• Several moves in each of several directions, then test

• Jump to a different part of the search space

15

Simulated Annealing

• Variant of hill climbing (so up is good)

• Tries to explore enough of the search
space early on, so that the final solution is
less sensitive to the start state

• May make some downhill moves before
finding a good way to move uphill.

16

Simulated Annealing

• Comes from the physical process of annealing in which substances
are raised to high energy levels (melted) and then cooled to solid
state.

• The probability of moving to a higher energy state, instead of lower is
p = e^(-ΔE/kT)
where ΔE is the positive change in energy level, T is the temperature,
and k is Bolzmann’s constant.

heat cool

17

Simulated Annealing

• At the beginning, the temperature is high.
• As the temperature becomes lower

– kT becomes lower
– ΔE/kT gets bigger
– (-ΔE/kT) gets smaller
– e^(-ΔE/kT) gets smaller

• As the process continues, the probability
of a downhill move gets smaller and
smaller.

18

For Simulated Annealing

• ΔE represents the change in the value of
the objective function.

• Since the physical relationships no longer
apply, drop k. So p = e^(-ΔE/T)

• We need an annealing schedule, which is
a sequence of values of T: T0 , T1 , T2 , ...

19

Simulated Annealing Algorithm
• current <- start state; if it’s a goal, return it

• for each T on the schedule /* need a schedule */

– next <- randomly selected successor of current
– evaluate next; it it’s a goal, return it

– ΔE <- value(next) – value(current) /* already negated */
– if ΔE > 0

• then current <- next /* better than current */
• else current <- next with probability e^(ΔE/T)

How would you do this probabilistic selection?

20

Simulated Annealing Properties
• At a fixed “temperature” T, state occupation probability

reaches the Boltzman distribution

• If T is decreased slowly enough (very slowly), the
procedure will reach the best state.

• Slowly enough has proven too slow for some
researchers who have developed alternate schedules.

p(x) = αe^(E(x)/kT)

21

Simulated Annealing Schedules

• Acceptance criterion and cooling schedule

22

Simulated Annealing Applications
• Basic Problems

– Traveling salesman
– Graph partitioning
– Matching problems
– Graph coloring
– Scheduling

• Engineering
– VLSI design

• Placement
• Routing
• Array logic minimization
• Layout

– Facilities layout
– Image processing
– Code design in information theory

23

Local Beam Search

• Keeps more previous states in memory
– Simulated annealing just kept one previous state in

memory.
– This search keeps k states in memory.

- randomly generate k initial states
- if any state is a goal, terminate
- else, generate all successors and select best k
- repeat

What does your book say is good about this?

24

174611094281174629844710

Genetic Algorithms
• Start with random population of states

– Representation serialized (ie. strings of characters or bits)
– States are ranked with “fitness function”

• Produce new generation
– Select random pair(s) using probability:

• probability ~ fitness
– Randomly choose “crossover point”

• Offspring mix halves
– Randomly mutate bits

776511094281 776529844710

164611094281

776029844210

Crossover Mutation

	Review
	Review
	Performance of Heuristics
	Table of Effective Branching Factors
	Complexity of A*
	Why not always use A*?
	Iterative-Deepening A*
	Local Search Algorithms and Optimization Problems
	Hill Climbing
	AI Hill Climbing
	Hill Climbing Search
	Hill Climbing Problems
	Solving the Problems
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	For Simulated Annealing
	Simulated Annealing Algorithm
	Simulated Annealing Properties
	Simulated Annealing Schedules
	Simulated Annealing Applications
	Local Beam Search
	Genetic Algorithms

