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Review 

• Best-first search uses an evaluation 
function f(n) to select the next node for 
expansion.

• Greedy best-first search uses f(n) = h(n).

• Greedy best first search is not optimal, not 
complete, and has complexity O(bm).
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Review 

• A* search uses f(n) = g(n) + h(n).
• A* search is complete.
• A* is optimal if h(n) is admissable

h(n) <= h*(n) for true cost h*
– with tree search
– with graph search, if it discards the more 

expensive of any 2 paths to the same node or
– if h(n) is consistent  h(n) <= c(n,a,n’)+h(n’).
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Performance of Heuristics

• How do we evaluate a heuristic function?
• effective branching factor

– If A* using h finds a solution at depth d using 
N nodes, then the effective branching factor is

b | N ~ 1 + b + b    +  . . . +  b
• Example

32 d
=
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Table of Effective Branching Factors

b d N
2 2 7
2 5 63
3 2 13
3 5 364
3 10 88573
6 2 43
6 5 9331
6 10 72,559,411

How might we use this idea to evaluate a heuristic?
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Complexity of A*
• Time complexity is exponential in the length of 

the solution path unless
|h(n) – h(n*)| < O(log h*(n)) 
which we can’t guarantee.

• But, this is AI, computers are fast, and a good 
heuristic helps a lot.

• Space complexity is also exponential, because it 
keeps all generated nodes in memory.
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Why not always use A*?

• Pros

• Cons
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Iterative-Deepening A*
• Like iterative-deepening depth-first, but...
• Depth bound modified to be an f-limit

– Start with  limit = h(start)
– Prune any node if f(node) > f-limit
– Next f-limit=min-cost of any node pruned

a

b

c

d

e

f
FL=15

FL=21

How would this work?
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Local Search Algorithms and 
Optimization Problems

• Complete state formulation
– For example, for the 8 queens problem, all 8 queens 

are on the board and need to be moved around to get 
to a goal state

• Equivalent to optimization problems often found 
in science and engineering

• Start somewhere and try to get to the solution 
from there

• Local search around the current state to decide 
where to go next
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Hill Climbing “Gradient ascent”

solution

Note: solutions shown
here as max not min.

Often used for numerical optimization problems.

How does it work?
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AI Hill Climbing

Steepest-Ascent Hill Climbing
• current <- start state; if it’s a goal return it.
• loop

– initialize best_successsor
– for each operator
– apply operator to current to get next

• if next is a goal, return it and quit
• if next is better than best_successor, best_successor <- next

– if best-successor is better than current, current <- best_successor
• end loop
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Hill Climbing Search

4 10 3 2 8

current
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Hill Climbing Problems
Local maxima

Plateaus

Diagonal ridges 

What is it sensitive to?
Does it have any advantages?
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Solving the Problems
• Allow backtracking (What happens to complexity?)

• Stochastic hill climbing: choose at random from uphill 
moves, using steepness for a probability

• Random restarts: “If at first you don’t succeed, try, try 
again.”

• Several moves in each of several directions, then test

• Jump to a different part of the search space
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Simulated Annealing

• Variant of hill climbing (so up is good)

• Tries to explore enough of the search 
space early on, so that the final solution is 
less sensitive to the start state

• May make some downhill moves before 
finding a good way to move uphill.
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Simulated Annealing

• Comes from the physical process of annealing in which substances 
are raised to high energy levels (melted) and then cooled to solid 
state.

• The probability of moving to a higher energy state, instead of lower is  
p = e^(-ΔE/kT)
where ΔE is the positive change in energy level, T is the temperature, 
and k is Bolzmann’s constant.

heat                                 cool
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Simulated Annealing

• At the beginning, the temperature is high.
• As the temperature becomes lower

– kT becomes lower
– ΔE/kT gets bigger
– (-ΔE/kT) gets smaller
– e^(-ΔE/kT) gets smaller

• As the process continues, the probability 
of a downhill move gets smaller and 
smaller.
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For Simulated Annealing

• ΔE represents the change in the value of 
the objective function.

• Since the physical relationships no longer 
apply, drop k.   So p = e^(-ΔE/T) 

• We need an annealing schedule, which is 
a sequence of values of T: T0 , T1 , T2 , ...



19

Simulated Annealing Algorithm
• current <- start state; if it’s a goal, return it

• for each T on the schedule /* need a schedule */

– next <- randomly selected successor of current
– evaluate next; it it’s a goal, return it

– ΔE <- value(next) – value(current) /* already negated */
– if ΔE > 0

• then current <- next          /* better than current */
• else current <- next with probability e^(ΔE/T)

How would you do this probabilistic selection?
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Simulated Annealing Properties
• At a fixed “temperature” T, state occupation probability 

reaches the Boltzman distribution

• If T is decreased slowly enough (very slowly), the 
procedure will reach the best state.

• Slowly enough has proven too slow for some 
researchers who have developed alternate schedules.

p(x) = αe^(E(x)/kT)
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Simulated Annealing Schedules

• Acceptance criterion and cooling schedule
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Simulated Annealing Applications
• Basic Problems

– Traveling salesman
– Graph partitioning
– Matching problems
– Graph coloring
– Scheduling

• Engineering
– VLSI design

• Placement
• Routing
• Array logic minimization
• Layout

– Facilities layout
– Image processing
– Code design in information theory
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Local Beam Search

• Keeps more previous states in memory
– Simulated annealing just kept one previous state in 

memory.
– This search keeps k states in memory.

- randomly generate k initial states
- if any state is a goal, terminate
- else, generate all successors and select best k
- repeat

What does your book say is good about this?
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174611094281174629844710

Genetic Algorithms 
• Start with random population of states

– Representation serialized (ie. strings of characters or bits)
– States are ranked with “fitness function”

• Produce new generation
– Select random pair(s) using probability: 

• probability ~ fitness
– Randomly choose “crossover point”

• Offspring mix halves
– Randomly mutate bits

776511094281 776529844710

164611094281

776029844210

Crossover           Mutation
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