Informed Search

O (2
ldea: be smart
about what paths S %g
to try. D0 (
@,
/

Expanding a Node

s C OO OO OO

list

How should we implement this?

Blind Search vs. Informed Search

 \WWhat's the difference?

 How do we formally specify this?

General Tree Search Paradigm
(adapted from Chapter 3)

function tree-search(root-node)
fringe € successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
If goal-test(state) return solution(node)
fringe < Insert-all(successors(node),fringe) }
return failure
end tree-search

Does this look familiar?

General Graph Search Paradigm
(adapted from Chapter 3)

function graph-search(root-node)
closed < {}
fringe € successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
If goal-test(state) return solution(node)
If notin(state,closed)
{add(state,closed)
fringe < insert-all(successors(node),fringe) }}
return failure
end graph-search

What's the difference between this and tree-search? °

Tree Search or Graph Search

e \WWhat's the key to the order of the search?

Best-First Search

« Use an evaluation function f(n).

e Always choose the node from fringe that
has the lowest f value.

5)

Best-First Search Example

3 6
@ ©

Old Friends

e Breadth first = best first
— with f(n) = depth(n)

e Dijkstra’s Algorithm = best first
— with f(n) = g(n)
—where g(n) = sum of edge costs from start to n
— space bound (stores all generated nodes)

Heuristics

 \What Is a heuristic?

 What are some examples of heuristics we
use?

o \We’'ll call the heuristic function h(n).

10

Greedy Best-First Search

f(n) = h(n)

What does that mean?

|s greedy search optimal?
IS It complete?

What Is its worst-case complexity for a
tree with branching factor b and maximum
depth m?

11

A* Search

Hart, Nilsson & Rafael 1968
— Best first search with f(n) = g(n) + h(n)
where g(n) = sum of edge costs from start to n
and h(n) = estimate of lowest cost path n-->goal
— If h(n) Is admissible then search will find optimal
solution. L Never over'es’rimq’res The true
{cosT of any solution which

can be reached from a node.

Space bound since the queue must be maintained.

12

(7))
-
o
] Oradea
-t 71
Arad
Sibiu g9 Fagaras
116
80
Timisoara . Rimnicu Vilcea
1 . .
9 Lugoj Pitesti
70 =
7] Mehadia 10
75 138
Dobreta [120
LI Craiova

211

MNeamt
u 87
] lasi
92
[] Vaslui
142
98
85 [] Hirsova
Urziceni
] 86
Bucharest
90 u
_ Eforie
] Giurgiu

end

Shortest Path Example

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 23
Oradea 380
Pitesti 08
Rimnicu Vilcea |93
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 100
Zerind 372

13

A* Shortest Path Example

366=0+366

14

A* Shortest Path Example

CArad >
> Sibiu_3 imisoara CZerind 3

393=140+253 447=118+329 449=75+374

15

A* Shortest Path Example

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

16

A* Shortest Path Example

_Arad D
C_Sitiu > Climisoara C Zerind 3

447=118+329 449=75+374

RS (o> G

646=280+366 415=239+176 671=291+380

Clraiova CPitesti > C_Sibiu_J

926=366+160 417=317+100 553=300+253

17

A* Shortest Path Example

C_Arad_ D
Sibiu_> Cimisoara C Zerind 2

447=118+329 449=75+374

> > ool @i

646=280+366 671=291+380

C_sibiu_> Buchareshy CCraiova S Pitesti S C_Sibiu_3

591=338+4253 450=450+0 526=366+160 417=317+100 553=300+253

18

A* Shortest Path Example

C_Arad >
C_Sibiu > Climisoara> C Zerind 3

447=118+329 449=75+374

@ Fagaras Oradea

646=280+366 671=291+380
591=338+253 450=450+0 526=366+160

{ Craiova)

418=418+0 615=455+160 607=414+193

19

8 Puzzle Example

* f(n) = g(n) + h(n)
 What Is the usual g(n)?

* two we
—hl=t

l-known h(n)’s
ne number of misplaced tiles

—h2 =t

ne sum of the distances of the tiles from

their goal positions, using city block distance,

which

IS the sum of the horizontal and vertical

distances

20

goal

8 Puzzle Using Number of
Misplaced Tiles

38
6

~N PN
&2 "V

21

Continued

22

Optimality of A*

Suppose a suboptimal goal G2 has been generated and
IS In the queue. Let n be an unexpanded node on the
shortest path to an optimal goal G1.

@ f(n) = g(n) + h(n)
/ \ <g(Gl) Why?
/ < g(G2) G2 is suboptimal
nO = f(G2) f(G2) = g(G2)

So f(n) < f(G2) and A* will never select
O O G2 for expansion.

23

Algorithms for A*

Since Nillsson defined A* search, many different
authors have suggested algorithms.

Using Tree-Search, the optimality argument
holds, but you search too many states.

Using Graph-Search, it can break down,
because an optimal path to a repeated state can
be discarded If it iIs not the first one found.

One way to solve the problem is that whenever
you come to a repeated node, discard the longer
path to It.

24

The Rich/Knight Implementation

e a node consists of
— state
— @, h, fvalues
— list of successors
— pointer to parent

« OPEN Is the list of nodes that have been generated and
had h applied, but not expanded and can be
Implemented as a priority queue.

« CLOSED is the list of nodes that have already been
expanded.

25

Rich/Knight

1)

[* Initialization */
OPEN <- start node
Initialize the start node

g

h:

f:

CLOSED <- empty list

26

Rich/Knight

2) repeat until goal (or time limit or space limit)

e If OPEN Is empty, fall
« BESTNODE <- node on OPEN with lowest f
o If BESTNODE is a goal, exit and succeed

e remove BESTNODE from OPEN and add it to
CLOSED

e generate successors of BESTNODE

27

Rich/Knight

for each successor s do
1. set its parent field
2. compute g(s)

3. If there iIs a node OLD on OPEN with
the same state info as s

{ add OLD to successors(BESTNODE)

If g(s) < g(OLD), update OLD and
throw out s }

28

Rich/Knight

4. 1f (s Is not on OPEN and there Is a node
OLD on CLOSED with the same state
Info as s

{ add OLD to successors(BESTNODE)
If g(s) < g(OLD), update OLD,
throw out s,

***propagate the lower costs to
successors(OLD) }

That sounds like a LOT of work. What could we do insteaozl;?

Rich/Knight

5. If s was not on OPEN or CLOSED
{ add s to OPEN
add s to successors(BESTNODE)
calculate g(s), h(s), f(s) }

end of repeat loop

30

The Heuristic Function h

If his a perfect estimator of the true cost then A* will
always pick the correct successor with no search.

If h is admissible, A* with TREE-SEARCH is guaranteed
to give the optimal solution.

If h Is consistent, too, then GRAPH-SEARCH without
extra stuff is optimal.

h(n) < c(n,a,n’) + h(n’) for every node n and each of
Its successors n’ arrived at through action a.

If h is not admissable, no guarantees, but it can work
well if h is not often greater than the true cost.

31

	Informed Search
	Expanding a Node
	Blind Search vs. Informed Search
	General Tree Search Paradigm(adapted from Chapter 3)
	General Graph Search Paradigm(adapted from Chapter 3)
	Tree Search or Graph Search
	Best-First Search
	Best-First Search Example
	Old Friends
	Heuristics
	Greedy Best-First Search
	A* Search
	Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	8 Puzzle Example
	8 Puzzle Using Number of Misplaced Tiles
	Continued
	Optimality of A*
	Algorithms for A*
	The Rich/Knight Implementation
	Rich/Knight
	Rich/Knight
	Rich/Knight
	Rich/Knight
	Rich/Knight
	The Heuristic Function h

