Informed Search

Idea: be smart about what paths to try.

Expanding a Node

How should we implement this?

Blind Search vs. Informed Search

- What's the difference?
- How do we formally specify this?

General Tree Search Paradigm (adapted from Chapter 3)

```
function tree-search(root-node)
    fringe < successors(root-node)
    while ( notempty(fringe) )
        {node \leftarrow remove-first(fringe)
        state < state(node)
        if goal-test(state) return solution(node)
        fringe < insert-all(successors(node),fringe) }
        return failure
end tree-search
```

Does this look familiar?

General Graph Search Paradigm (adapted from Chapter 3)

```
function graph-search(root-node)
    closed }\leftarrow{
    fringe < successors(root-node)
    while ( notempty(fringe) )
    {node < remove-first(fringe)
    state < state(node)
    if goal-test(state) return solution(node)
    if notin(state,closed)
        {add(state,closed)
        fringe < insert-all(successors(node),fringe) }}
        return failure
end graph-search
```


Tree Search or Graph Search

-What's the key to the order of the search?

Best-First Search

- Use an evaluation function $f(n)$.
- Always choose the node from fringe that has the lowest f value.

Best-First Search Example

Old Friends

- Breadth first = best first
- with $f(n)=\operatorname{depth}(n)$
- Dijkstra's Algorithm = best first
- with $f(n)=g(n)$
- where $g(n)=$ sum of edge costs from start to n
- space bound (stores all generated nodes)

Heuristics

- What is a heuristic?
- What are some examples of heuristics we use?
- We'll call the heuristic function $h(n)$.

Greedy Best-First Search

- $f(n)=h(n)$
- What does that mean?
- Is greedy search optimal?
- Is it complete?
- What is its worst-case complexity for a tree with branching factor b and maximum depth m ?

A* Search

- Hart, Nilsson \& Rafael 1968
- Best first search with $f(n)=g(n)+h(n)$
where $g(n)=$ sum of edge costs from start to n and $h(n)=$ estimate of lowest cost path $n-->g o a l$
- If $h(n)$ is admissible then search will find optimal solution.

Space bound since the queue must be maintained.

Shortest Path Example

Straight-line distance
to Bucharest
Arad
366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras $\quad 178$
Giurgiu $\quad 77$
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

A* Shortest Path Example

8 Puzzle Example

- $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
- What is the usual $g(n)$?
- two well-known h(n)'s
- h1 = the number of misplaced tiles
- $\mathrm{h} 2=$ the sum of the distances of the tiles from their goal positions, using city block distance, which is the sum of the horizontal and vertical distances

8 Puzzle Using Number of Misplaced Tiles

1	2	3
8		4
7	6	5
goal		

2	8	3
1	6	4
7		5

Continued

Optimality of A* *

Suppose a suboptimal goal G2 has been generated and is in the queue. Let n be an unexpanded node on the shortest path to an optimal goal G1.

$$
f(n)=g(n)+h(n)
$$

$$
\leq g(G 1) \quad \text { Why? }
$$

$$
<\mathrm{g}(\mathrm{G} 2) \quad \mathrm{G} 2 \text { is suboptimal }
$$

$$
=f(G 2) \quad f(G 2)=g(G 2)
$$

So $f(n)<f(G 2)$ and A^{*} will never select G2 for expansion.

Algorithms for A^{*}

- Since Nillsson defined A* search, many different authors have suggested algorithms.
- Using Tree-Search, the optimality argument holds, but you search too many states.
- Using Graph-Search, it can break down, because an optimal path to a repeated state can be discarded if it is not the first one found.
- One way to solve the problem is that whenever you come to a repeated node, discard the longer path to it.

The Rich/Knight Implementation

- a node consists of
- state
- g, h, f values
- list of successors
- pointer to parent
- OPEN is the list of nodes that have been generated and had h applied, but not expanded and can be implemented as a priority queue.
- CLOSED is the list of nodes that have already been expanded.

Rich/Knight

1) /* Initialization */

OPEN <- start node

Initialize the start node
g:
h:
f:

CLOSED <- empty list

Rich/Knight

2) repeat until goal (or time limit or space limit)

- if OPEN is empty, fail
- BESTNODE <- node on OPEN with lowest f
- if BESTNODE is a goal, exit and succeed
- remove BESTNODE from OPEN and add it to CLOSED
- generate successors of BESTNODE

Rich/Knight

for each successor s do

1. set its parent field
2. compute $g(s)$
3. if there is a node OLD on OPEN with the same state info as s
\{ add OLD to successors(BESTNODE) if $g(s)<g(O L D)$, update OLD and throw out s \}

Rich/Knight

4. if (s is not on OPEN and there is a node OLD on CLOSED with the same state info as s
\{ add OLD to successors(BESTNODE) if $g(s)<g(O L D)$, update OLD, throw out s, ***propagate the lower costs to successors(OLD) \}

That sounds like a LOT of work. What could we do instead?

Rich/Knight

5. If s was not on OPEN or CLOSED \{ add s to OPEN add s to successors(BESTNODE)
calculate $\mathrm{g}(\mathrm{s}), \mathrm{h}(\mathrm{s}), \mathrm{f}(\mathrm{s})$ \}
end of repeat loop

The Heuristic Function h

- If h is a perfect estimator of the true cost then A^{*} will always pick the correct successor with no search.
- If h is admissible, A^{*} with TREE-SEARCH is guaranteed to give the optimal solution.
- If h is consistent, too, then GRAPH-SEARCH without extra stuff is optimal.
$h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$ for every node n and each of its successors n' arrived at through action a.
- If h is not admissable, no guarantees, but it can work well if h is not often greater than the true cost.

