
Informed Search

Idea: be smart
about what paths
to try.

1



Expanding a Node

successor
list

How should we implement this?

2



Blind Search vs. Informed Search

• What’s the difference?   

• How do we formally specify this?

3



General Tree Search Paradigm
(adapted from Chapter 3)

function tree-search(root-node)
fringe successors(root-node)
while ( notempty(fringe) )

{node remove-first(fringe)
state state(node)
if goal-test(state) return solution(node)
fringe insert-all(successors(node),fringe) }

return failure
end tree-search

Does this look familiar?

4



General Graph Search Paradigm
(adapted from Chapter 3)

function graph-search(root-node)
closed { }
fringe successors(root-node)
while ( notempty(fringe) )

{node remove-first(fringe)
state state(node)
if goal-test(state) return solution(node)
if  notin(state,closed) 

{add(state,closed)
fringe insert-all(successors(node),fringe) }}

return failure
end graph-search

What’s the difference between this and tree-search? 5



Tree Search or Graph Search

• What’s the key to the order of the search?

6



Best-First Search

• Use an evaluation function f(n).
• Always choose the node from fringe that 

has the lowest f value.

3 5 1

7



Best-First Search Example

3 5 1

4 6

8



Old Friends

• Breadth first = best first
– with f(n) = depth(n)

• Dijkstra’s Algorithm = best first
– with f(n) = g(n)
– where g(n) = sum of edge costs from start to n
– space bound (stores all generated nodes)

9



Heuristics

• What is a heuristic?

• What are some examples of heuristics we 
use?

• We’ll call the heuristic function h(n).

10



Greedy Best-First Search

• f(n) = h(n)
• What does that mean?
• Is greedy search optimal?
• Is it complete?
• What is its worst-case complexity for a 

tree with branching factor b and maximum 
depth m?

11



A* Search
• Hart, Nilsson & Rafael 1968

– Best first search with f(n) = g(n) + h(n)
where g(n) = sum of edge costs from start to n
and h(n) = estimate of lowest cost path n-->goal

– If h(n) is admissible then search will find optimal 
solution. Never overestimates the true

cost of any solution which 
can be reached from a node.{

Space bound since the queue must be maintained.
12



Shortest Path Examplestart

end
13



A* Shortest Path Example

14



A* Shortest Path Example

15



A* Shortest Path Example

16



A* Shortest Path Example

17



A* Shortest Path Example

18



A* Shortest Path Example

19



8 Puzzle Example

• f(n) = g(n) + h(n)
• What is the usual g(n)?
• two well-known h(n)’s

– h1 = the number of misplaced tiles
– h2 = the sum of the distances of the tiles from 

their goal positions, using city block distance, 
which is the sum of the horizontal and vertical 
distances

20



8 Puzzle Using Number of 
Misplaced Tiles

1 2  3
8 4
7 6  5

2 8  3
1 6  4
7      5

goal

21



Continued

22



Optimality of A*
Suppose a suboptimal goal G2 has been generated and 
is in the queue. Let n be an unexpanded node on the 
shortest path to an optimal goal G1.

f(n) = g(n) + h(n)
< g(G1)                 Why?
< g(G2)                 G2 is suboptimal
=  f(G2)                 f(G2) = g(G2)

So f(n) < f(G2) and A* will never select
G2 for expansion.

23

G1

n

G2



Algorithms for A*
• Since Nillsson defined A* search, many different 

authors have suggested algorithms.
• Using Tree-Search, the optimality argument 

holds, but you search too many states.
• Using Graph-Search, it can break down, 

because an optimal path to a repeated state can 
be discarded if it is not the first one found. 

• One way to solve the problem is that whenever 
you come to a repeated node, discard the longer
path to it.

24



The Rich/Knight Implementation
• a node consists of

– state
– g, h, f values
– list of successors
– pointer to parent

• OPEN is the list of nodes that have been generated and 
had h applied, but not expanded and can be 
implemented as a priority queue.

• CLOSED is the list of nodes that have already been 
expanded.

25



Rich/Knight
1) /* Initialization */

OPEN <- start node

Initialize  the start node
g:
h:
f:

CLOSED <- empty list

26



Rich/Knight

2) repeat until goal (or time limit or space limit)

• if OPEN is empty, fail
• BESTNODE <- node on OPEN with lowest f
• if BESTNODE is a goal, exit and succeed
• remove BESTNODE from OPEN and add it to 

CLOSED
• generate successors of BESTNODE

27



Rich/Knight

for each successor s do
1. set its parent field
2. compute g(s)
3. if there is a node OLD on OPEN with 
the same state info as s

{ add OLD to successors(BESTNODE)
if g(s) < g(OLD), update OLD and 

throw out s }

28



Rich/Knight

29

4. if (s is not on OPEN and there is a node 
OLD on CLOSED with the same state 
info as s
{ add OLD to successors(BESTNODE)

if g(s) < g(OLD), update OLD, 
throw out s,
***propagate the lower costs to 
successors(OLD) }

That sounds like a LOT of work. What could we do instead?



Rich/Knight

5. If s was not on OPEN or CLOSED 
{ add s to OPEN
add s to successors(BESTNODE)
calculate g(s), h(s), f(s) }

end of repeat loop

30



The Heuristic Function h
• If h is a perfect estimator of the true cost then A* will 

always pick the correct successor with no search. 

• If h is admissible, A* with TREE-SEARCH is guaranteed 
to give the optimal solution.

• If h is consistent, too, then GRAPH-SEARCH without 
extra stuff is optimal.

h(n) < c(n,a,n’) + h(n’) for every node n and each of 
its successors n’ arrived at through action a.

• If h is not admissable, no guarantees, but it can work 
well if h is not often greater than the true cost.

31


	Informed Search
	Expanding a Node
	Blind Search vs. Informed Search
	General Tree Search Paradigm(adapted from Chapter 3)
	General Graph Search Paradigm(adapted from Chapter 3)
	Tree Search or Graph Search
	Best-First Search
	Best-First Search Example
	Old Friends
	Heuristics
	Greedy Best-First Search
	A* Search
	Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	A* Shortest Path Example
	8 Puzzle Example
	8 Puzzle Using Number of Misplaced Tiles
	Continued
	Optimality of A*
	Algorithms for A*
	The Rich/Knight Implementation
	Rich/Knight
	Rich/Knight
	Rich/Knight
	Rich/Knight
	Rich/Knight
	The Heuristic Function h

