Unsupervised Learning

- Find patterns in the data.
- Group the data into clusters.
- Many clustering algorithms.
 - K means clustering
 - EM clustering
 - Graph-Theoretic Clustering
 - Clustering by Graph Cuts
 - etc

Clustering by K-means Algorithm

Form K-means clusters from a set of *n*-dimensional feature vectors

- 1. Set ic (iteration count) to 1
- 2. Choose randomly a set of K means $m_1(1)$, ..., $m_K(1)$.
- 3. For each vector x_i , compute $D(x_i, m_k(ic))$, k=1,...K and assign x_i to the cluster C_j with nearest mean.
- 4. Increment ic by 1, update the means to get $m_1(ic),...,m_K(ic)$.
- 5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.

K-Means Classifier (shown on RGB color data)

color clusters

Cluster Parameters m_1 for C_1 m_2 for C_2 ... m_k for C_k

K-Means Classifier (Cont.)

Input (Known)

$x_{1} = \{r_{1}, g_{1}, b_{1}\}\$ $x_{2} = \{r_{2}, g_{2}, b_{2}\}\$... $x_{i} = \{r_{i}, g_{i}, b_{i}\}\$...

Output (Unknown)

Cluster Parameters m_1 for C_1 m_2 for C_2 ... m_k for C_k

Classification Results
$$x_1 \rightarrow C(x_1)$$

$$x_2 \rightarrow C(x_2)$$

$$\cdots$$

$$x_i \rightarrow C(x_i)$$

$$\cdots$$

K-Means → EM

The clusters are usually Gaussian distributions.

Boot Step:

- Initialize K clusters: $C_1, ..., C_K$

 (μ_{j}, Σ_{j}) and $P(C_{j})$ for each cluster j.

• Iteration Step:

Estimate the cluster of each datum

$$p(C_j | x_i)$$

Expectation

Re-estimate the cluster parameters

$$(\mu_j, \Sigma_j), p(C_j)$$
 For each cluster j

The resultant set of clusters is called a **mixture model**; if the distributions are Gaussian, it's a Gaussian mixture. 5

Expectation Step

Input (Known)

$$x_{1} = \{r_{1}, g_{1}, b_{1}\}$$

$$x_{2} = \{r_{2}, g_{2}, b_{2}\}$$
...
$$x_{i} = \{r_{i}, g_{i}, b_{i}\}$$

Input (Estimation)

Cluster Parameters (μ_1, Σ_1) , $p(C_1)$ for C_1 (μ_2, Σ_2) , $p(C_2)$ for C_2 ... (μ_k, Σ_k) , $p(C_k)$ for C_k

Output

Maximization Step

Input (Known)

$$x_{1} = \{r_{1}, g_{1}, b_{1}\}\$$
 $x_{2} = \{r_{2}, g_{2}, b_{2}\}\$
...
 $x_{i} = \{r_{i}, g_{i}, b_{i}\}\$

+

Input (Estimation)

Classification Results
$$p(C_1/x_1)$$

$$p(C_j/x_2)$$
...
$$p(C_j/x_i)$$
...

Output

EM Clustering using color and texture information at each pixel (from Blobworld)

EM for Classification of Images in Terms of their Color Regions

EM

Initial Model for "trees"

Initial Model for "sky"

Final Model for "trees"

Final Model for "sky"

Sample Results

cheetah

Sample Results (Cont.)

grass

Sample Results (Cont.)

lion

