
1

Constraint Satisfaction Problems

Soup

Total Cost
< $30

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both
Spicy

Constraint Network

2

Formal Definition of CSP

•

A constraint satisfaction problem (CSP) is
a triple (V, D, C)

where

–

V

is a set of variables X1

, ... , Xn

.
–

D

is the union of a set of domain sets

D1

,...,Dn

, where Di

is the domain of possible
values for variable Xi

.
–

C

is a set of constraints on the values of the

variables, which can be pairwise

(simplest
and most common) or k

at a time.

3

CSPs

vs. Standard Search Problems

•

Standard search problem:�
–

state

is a "black box“

–

any data structure that supports
successor function, heuristic function, and goal test�

•

CSP:�
–

state

is defined by variables

Xi

with values

from domain

Di

�
–

goal test

is a set of constraints

specifying allowable
combinations of values for subsets of variables�

•

Simple example of a formal representation language

•

Allows useful general-purpose

algorithms with more
power than standard search algorithms�

4

Example: Map-Coloring

•

Variables

WA, NT, Q, NSW, V, SA, T
•

Domains

Di

= {red,green,blue}
•

Constraints: adjacent regions must have different colors�
•

e.g., WA ≠

NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}�

5

Example: Map-Coloring

•

Solutions

are complete

and consistent
 assignments, e.g., WA = red, NT = green,Q =

red,NSW = green,V = red,SA = blue,T = green�

6

Constraint graph
•

Binary CSP:

each constraint relates two variables�

•

Constraint graph:

nodes are variables, arcs are
constraints

7

Varieties of constraints
•

Unary

constraints involve a single variable,

–

e.g., SA ≠

green�

•

Binary

constraints involve pairs of variables,
–

e.g., value(SA) ≠

value(WA)�

•

Higher-order

constraints involve 3 or more
variables,
–

e.g., cryptarithmetic

column constraints

�

8

Example: Cryptarithmetic

•

Variables:
{F, T, U, W, R, O, X1,

X2, X3

}
•

Domains: {0,1,2,3,4,5,6,7,8,9}

•

Constraints: Alldiff

(F,T,U,W,R,O)�
–

O + O = R + 10 ·

X1

�
–

X1

+ W + W = U + 10 ·

X2

�
–

X2

+ T + T = O + 10 ·

X3
–

X3

= F, T ≠

0, F

≠

0�

9

Example: Latin Squares Puzzle

X1 X2 X3 X4
X5 X6 X7 X8
X9 X10 X11 X12
X13 X14 X15 X16

red RT RS RC RO
green GT GS GC GO
blue BT BS BC BO
yellow YT YS YC YO

Variables Values

Constraints: In each row, each column, each major diagonal, there must
be no two markers of the same color or same shape.

How can we formalize this?
V:
D:
C:

10

Real-world CSPs
•

Assignment problems
–

e.g., who teaches what class�

•

Timetabling problems�
–

e.g., which class is offered when and where?�

•

Transportation scheduling�
•

Factory scheduling�

Notice that many real-world problems involve
real-valued variables�

11

The Consistent Labeling Problem

• Let P = (V,D,C)

be a constraint satisfaction problem.

• An assignment is a partial function f : V -> D that assigns
a value (from the appropriate domain) to each variable

• A consistent assignment or consistent labeling

is an
assignment f that satisfies all the constraints.

• A complete consistent labeling

is a consistent labeling
in which every variable has a value.

12

Standard Search Formulation

•

state: (partial) assignment
•

initial state:

the empty assignment { }
•

successor function: assign a value to an unassigned variable that
does not conflict with current assignment

fail if no legal assignments�
•

goal test: the current assignment is complete
(and is a consistent labeling)

1.

This is the same for all CSPs

regardless of application.

2.

Every solution appears at depth n

with n

variables
we can use depth-first search.

3.

Path is irrelevant, so we can also use complete-state formulation.

13

What Kinds of Algorithms are used for CSP?

• Backtracking Tree Search

• Tree Search with Forward Checking

• Tree Search with Discrete Relaxation (arc consistency,
k-consistency)

• Many other variants

• Local Search using Complete State Formulation

14

Backtracking Tree Search

•

Variable assignments are commutative}, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]�

•

Only need to consider assignments to a single variable at each node.

•

Depth-first search for CSPs

with single-variable assignments is called
backtracking

search.

•

Backtracking search is the basic uninformed algorithm for CSPs.

•

Can solve n-queens for n

≈

25.

15

Graph Matching Example
Find a subgraph

isomorphism from R to S.

1 2

3 4

e

a

b

c

d

R

S

(1,a) (1,b) (1,c) (1,d) (1,e)

(2,a) (2,b) (2,c) (2,d) (2,e)

(3,a) (3,b) (3,c) (3,d) (3,e) (3,a) (3,b) (3,c) (3,d) (3,e)

(4,a) (4,b) (4,c) (4,d) (4,e)

X X X

X X X X X X X X X

X X X X

How do we formalize this problem?

16

Backtracking Search

17

Backtracking Example

18

Backtracking Example

19

Backtracking Example

20

Backtracking Example

21

Improving Backtracking Efficiency

•

General-purpose

methods can give huge
gains in speed:�
–

Which variable should be assigned next?�

–

In what order should its values be tried?�
–

Can we detect inevitable failure early?�

22

Most Constrained Variable

•

Most constrained variable:
choose the variable with the fewest legal

values�

•

a.k.a. minimum remaining values (MRV)
 heuristic�

23

Most Constraining Variable

•

Tie-breaker among most constrained
variables

•

Most constraining variable:�
–

choose the variable with the most constraints
on remaining variables�

24

Least Constraining Value

•

Given a variable, choose the least
constraining value:�
–

the one that rules out the fewest values in the
remaining variables�

•

Combining these heuristics makes 1000
queens feasible�

25

Forward Checking
(Haralick

and Elliott, 1980)

Variables: U = {u1, u2, …

, un}
Values: V = {v1, v2, …

, vm}

Constraint Relation: R = {(ui,v,uj,v’) | ui

having value
v is compatible with uj

having label v’}

If (ui,v,uj,v’) is not in R, they are incompatible,
meaning if ui

has value v, uj

cannot have value v’.

ui,v uj,v’

26

Forward Checking
Forward checking is based on the idea that
once variable ui

is assigned a value v,

then certain future variable-value pairs (uj,v’)
become impossible.

ui,v)

uj,v’ uj,v’

Instead of finding this out at many places on the tree,
we can rule it out in advance.

27

Data Structure for Forward Checking

Future error table (FTAB)
One per level of the tree (ie. a stack of tables)

v1 v2 . . . vm
u1
u2
:
un

At some level in the tree,
for future (unassigned) variables u

FTAB(u,v) = 1 if it is still possible to assign v to u
0 otherwise

What does it mean if a
whole row becomes 0?

28

How do we incorporate forward checking into a
backtracking depth-first search?

29

Graph Matching Example

1 2

3 4

e

a

b

c

d

R

S

(1,a) (1,b) (1,c) (1,d) (1,e)

(2,a) (2,b) (2,c) (2,d) (2,e)

(3,a) (3,b) (3,c) (3,d) (3,e) (3,a) (3,b) (3,c) (3,d) (3,e)

(4,a) (4,b) (4,c) (4,d) (4,e)

X X X

X X X X X X X X X

X X X X

a b c d e
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1a b c d e

2
3
4

a b c d e
3
4

a b c d e
3
4

30

Book’s Forward Checking Example

•

Idea:
–

Keep track of remaining legal values for unassigned variables
–

Terminate search when any variable has no legal values�

31

Forward Checking
•

Idea:
–

Keep track of remaining legal values for unassigned variables
–

Terminate search when any variable has no legal values�

32

Forward Checking
•

Idea:
–

Keep track of remaining legal values for unassigned variables
–

Terminate search when any variable has no legal values�

33

Forward Checking
•

Idea:
–

Keep track of remaining legal values for unassigned variables
–

Terminate search when any variable has no legal values�

34

Constraint Propagation
•

Forward checking propagates information from assigned
to unassigned variables, but doesn't provide early
detection for all failures:�

•

NT and SA cannot both be blue!�
•

Constraint propagation

repeatedly enforces constraints

locally�

35

Arc Consistency
•

Simplest form of propagation makes each arc consistent

•

X Y is consistent iff�
for every

value x of X there is some

allowed value y of Y�

36

Arc Consistency
•

Simplest form of propagation makes each arc consistent

•

X Y is consistent iff�
for every

value x of X there is some

allowed value y of Y�

37

Arc Consistency
•

Simplest form of propagation makes each arc consistent

•

X Y is consistent iff�
for every

value x of X there is some

allowed value y�of Y

•

If X

loses a value, neighbors of X

need to be rechecked�

38

Arc consistency
•

Simplest form of propagation makes each arc consistent

•

X Y is consistent iff�
for every

value x of X there is some

allowed value y�of Y

•

If X

loses a value, neighbors of X

need to be rechecked
•

Arc consistency detects failure earlier than forward
checking�

•

Can be run as a preprocessor or after each
assignment�

�

39

Arc Consistency Algorithm AC-3
 Sometimes called Discrete Relaxation

•

Time complexity: O(n2d3)�

40

Putting It All Together

•

backtracking tree search
•

with forward checking

•

add arc-consistency
–

For each pair of future variables (ui,uj) that
constrain one another

–

Check each possible remaining value v

of ui
–

Is there a compatible value w

of uj?

–

If not, remove v

from possible values for ui
(set FTAB(ui,v) to 0)

41

Comparison of Methods

• Backtracking tree search is a blind search.

• Forward checking checks constraints between the
current variable and all future ones.

• Arc consistency then checks constraints between
all pairs of future (unassigned) variables.

• What is the complexity of a backtracking tree search?

• How do forward checking and arc consistency affect that?

42

43

k-consistency
(from Haralick

and Shapiro, 1979,

The Consistent Labeling Problem: Part I)

Variables: U = {u1, u2, …

, un}
Values: V = {v1, v2, …

, vm}

Constraint Relation: R = {(u1,v1,u2,v2, …

uk,vk) |
u1 having value v1, u2 having value v2,…
uk

having value vk

are mutually compatible}

hyperarc

44

k-consistency

The φkp

discrete relaxation operator tried to
extend k-tuples

of consistent variables and values

to (k+p)-tuples

of consistent variables and values
in order to end up with a complete labeling consistent
over all n

variables and their values.

It did a great job of pruning the search, but it was
very expensive to run.

45

Local Search for CSPs
•

Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned�

•

To apply to CSPs:�
–

allow states with unsatisfied constraints�
–

operators reassign

variable values�

•

Variable selection: randomly select any conflicted
variable�

•

Value selection by min-conflicts heuristic:�
–

choose value that violates the fewest constraints�
–

i.e., hill-climb with h(n) = total number of violated constraints�

46

Example: 4-Queens
•

States: 4 queens in 4 columns (44

= 256 states)�
•

Actions: move queen in column�

•

Goal test: no attacks�
•

Evaluation: h(n) = number of attacks�

•

Given random initial state, can solve n-queens in almost
constant time for arbitrary n

with high probability (e.g., n

 = 10,000,000)�

47

Summary
•

CSPs

are a special kind of problem:�
–

states defined by values of a fixed set of variables�
–

goal test defined by constraints on variable values�

•

Backtracking = depth-first search with one variable assigned per
node�

•

Variable ordering and value selection heuristics help significantly�

•

Forward checking prevents assignments that guarantee later
failure�

•

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies�

•

Iterative min-conflicts is often effective in practice�

	Constraint Satisfaction Problems
	Formal Definition of CSP
	CSPs vs. Standard Search Problems
	Example: Map-Coloring
	Example: Map-Coloring
	Constraint graph
	Varieties of constraints
	Example: Cryptarithmetic
	Slide Number 9
	Real-world CSPs
	Slide Number 11
	Standard Search Formulation
	Slide Number 13
	Backtracking Tree Search
	Slide Number 15
	Backtracking Search
	Backtracking Example
	Backtracking Example
	Backtracking Example
	Backtracking Example
	Improving Backtracking Efficiency
	Most Constrained Variable
	Most Constraining Variable
	Least Constraining Value
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Book’s Forward Checking Example
	Forward Checking
	Forward Checking
	Forward Checking
	Constraint Propagation
	Arc Consistency
	Arc Consistency
	Arc Consistency
	Arc consistency
	Arc Consistency Algorithm AC-3�Sometimes called Discrete Relaxation
	Putting It All Together
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Local Search for CSPs
	Example: 4-Queens
	Summary

