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Formal Definition of CSP

•
 

A constraint satisfaction problem (CSP) is 
a triple (V, D, C)

 
where

–
 

V
 

is a set of variables X1

 

, ... , Xn

 

.
–

 
D

 
is the union of a set of domain sets 

D1

 

,...,Dn

 

, where Di

 

is the domain of possible 
values for variable Xi

 

.
–

 
C

 
is a set of constraints on the values of the 

variables, which can be pairwise
 

(simplest 
and most common) or k

 
at a time.
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CSPs
 

vs. Standard Search Problems

•
 

Standard search problem:�
–

 

state

 

is a "black box“

 

–

 

any data structure that supports 
successor function, heuristic function, and goal test�

•
 

CSP:�
–

 

state

 

is defined by variables

 

Xi

 

with values

 

from domain

 

Di

 

�
–

 

goal test

 

is a set of constraints

 

specifying allowable 
combinations of values for subsets of variables�

•
 

Simple example of a formal representation language

•
 

Allows useful general-purpose
 

algorithms with more 
power than standard search algorithms�
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Example: Map-Coloring

•

 

Variables

 

WA, NT, Q, NSW, V, SA, T
•

 

Domains

 

Di

 

= {red,green,blue}
•

 

Constraints: adjacent regions must have different colors�
•

 

e.g., WA ≠

 

NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)}�
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Example: Map-Coloring

•
 

Solutions
 

are complete
 

and consistent
 assignments, e.g., WA = red, NT = green,Q = 

red,NSW = green,V = red,SA = blue,T = green�
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Constraint graph
•

 
Binary CSP:

 
each constraint relates two variables�

•
 

Constraint graph:
 

nodes are variables, arcs are 
constraints
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Varieties of constraints
•

 
Unary

 
constraints involve a single variable, 

–
 

e.g., SA ≠
 

green�

•
 

Binary
 

constraints involve pairs of variables,
–

 
e.g., value(SA) ≠

 
value(WA)�

•
 

Higher-order
 

constraints involve 3 or more 
variables,
–

 
e.g., cryptarithmetic

 
column constraints

�
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Example: Cryptarithmetic

•
 

Variables:
{F, T, U, W, R, O, X1,

 

X2, X3

 

}
•

 
Domains: {0,1,2,3,4,5,6,7,8,9}

•
 

Constraints: Alldiff
 

(F,T,U,W,R,O)�
–

 

O + O = R + 10 ·

 

X1

 

�
–

 

X1

 

+ W + W = U + 10 ·

 

X2

 

�
–

 

X2

 

+ T + T = O + 10 ·

 

X3
–

 

X3

 

= F, T ≠

 

0, F

 

≠

 

0�
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Example: Latin Squares Puzzle

X1    X2    X3    X4
X5    X6    X7    X8
X9    X10  X11  X12
X13  X14  X15  X16

red        RT    RS    RC    RO
green   GT    GS    GC    GO
blue      BT    BS     BC    BO
yellow  YT    YS     YC    YO 

Variables                                Values

Constraints: In each row, each column, each major diagonal, there must
be no two markers of the same color or same shape.

How can we formalize this?
V:
D:
C:
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Real-world CSPs
•

 
Assignment problems
–

 
e.g., who teaches what class�

•
 

Timetabling problems�
–

 
e.g., which class is offered when and where?�

•
 

Transportation scheduling�
•

 
Factory scheduling�

Notice that many real-world problems involve 
real-valued variables�
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The Consistent Labeling Problem

• Let P = (V,D,C)
 

be a constraint satisfaction problem.

• An assignment is a partial function f : V -> D that assigns
a value (from the appropriate domain) to each variable

• A consistent assignment or consistent labeling
 

is an 
assignment f that satisfies all the constraints.

• A complete consistent labeling
 

is a consistent labeling
in which every variable has a value.
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Standard Search Formulation

•

 

state:  (partial) assignment
•

 

initial state:

 

the empty assignment { }
•

 

successor function: assign a value to an unassigned variable that 
does not conflict with current assignment

fail if no legal assignments�
•

 

goal test: the current assignment is complete
(and is a consistent labeling)

1.

 

This is the same for all CSPs

 

regardless of application.

2.

 

Every solution appears at depth n

 

with n

 

variables
we can use depth-first search.

3.

 

Path is irrelevant, so we can also use complete-state formulation.
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What Kinds of Algorithms are used for CSP?

• Backtracking Tree Search

• Tree Search with Forward Checking

• Tree Search with Discrete Relaxation (arc consistency, 
k-consistency)

• Many other variants 

• Local Search using Complete State Formulation
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Backtracking Tree Search

•

 

Variable assignments are commutative}, i.e.,
[ WA = red then NT = green ] same as [ NT = green then WA = red ]�

•

 

Only need to consider assignments to a single variable at each node.

•

 

Depth-first search for CSPs

 

with single-variable assignments is called 
backtracking

 

search.

•

 

Backtracking search is the basic uninformed algorithm for CSPs.

•

 

Can solve n-queens for n

 

≈

 

25.
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Graph Matching Example
Find a subgraph

 
isomorphism from R to S.

1 2

3 4

e

a

b

c

d

R

S

(1,a)                               (1,b) (1,c) (1,d) (1,e)

(2,a) (2,b) (2,c) (2,d)                 (2,e)

(3,a) (3,b) (3,c) (3,d) (3,e)     (3,a) (3,b) (3,c) (3,d) (3,e)

(4,a) (4,b) (4,c) (4,d) (4,e)

X      X                X

X               X       X        X           X      X       X   X        X

X       X       X                X

How do we formalize this problem?
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Backtracking Search
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Backtracking Example
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Backtracking Example
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Backtracking Example
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Backtracking Example
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Improving Backtracking Efficiency

•
 

General-purpose
 

methods can give huge 
gains in speed:�
–

 
Which variable should be assigned next?�

–
 

In what order should its values be tried?�
–

 
Can we detect inevitable failure early?�
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Most Constrained Variable

•
 

Most constrained variable:
choose the variable with the fewest legal 

values�

•
 

a.k.a. minimum remaining values (MRV)
 heuristic�
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Most Constraining Variable

•
 

Tie-breaker among most constrained 
variables

•
 

Most constraining variable:�
–

 
choose the variable with the most constraints 
on remaining variables�
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Least Constraining Value

•
 

Given a variable, choose the least 
constraining value:�
–

 
the one that rules out the fewest values in the 
remaining variables�

•
 

Combining these heuristics makes 1000 
queens feasible�
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Forward Checking
(Haralick

 
and Elliott, 1980)

Variables: U = {u1, u2, …
 

, un}
Values:     V = {v1, v2, …

 
, vm}

Constraint Relation: R = {(ui,v,uj,v’) | ui
 

having value
v is compatible with uj

 
having label v’}

If (ui,v,uj,v’) is not in R, they are incompatible,
meaning if ui

 
has value v, uj

 
cannot have value v’.

ui,v uj,v’
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Forward Checking
Forward checking is based on the idea that
once variable ui

 
is assigned a value v,

then certain future variable-value pairs (uj,v’)
become impossible.

ui,v)

uj,v’ uj,v’

Instead of finding this out at many places on the tree,
we can rule it out in advance.
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Data Structure for Forward Checking

Future error table (FTAB)
One per level of the tree (ie. a stack of tables)

v1   v2   . . .   vm
u1
u2
:
un

At some level in the tree,
for future (unassigned) variables u

FTAB(u,v) =  1 if it is still possible to assign v to u
0 otherwise

What does it mean if a
whole row becomes 0?
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How do we incorporate forward checking into a 
backtracking depth-first search?
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Graph Matching Example

1 2

3 4

e

a

b

c

d

R

S

(1,a)                               (1,b) (1,c) (1,d) (1,e)

(2,a) (2,b) (2,c) (2,d)                 (2,e)

(3,a) (3,b) (3,c) (3,d) (3,e)     (3,a) (3,b) (3,c) (3,d) (3,e)

(4,a) (4,b) (4,c) (4,d) (4,e)

X      X                X

X               X       X        X           X      X       X   X        X

X       X       X                X

a b c d e
1  1 1  1 1 1
2  1 1  1 1 1
3  1 1  1 1 1
4  1 1  1 1 1a b c d e

2
3
4

a b c d e
3
4

a b c d e
3
4
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Book’s Forward Checking Example

•
 

Idea: 
–

 

Keep track of remaining legal values for unassigned variables
–

 

Terminate search when any variable has no legal values�
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Forward Checking
•

 
Idea: 
–

 

Keep track of remaining legal values for unassigned variables
–

 

Terminate search when any variable has no legal values�
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Forward Checking
•

 
Idea: 
–

 

Keep track of remaining legal values for unassigned variables
–

 

Terminate search when any variable has no legal values�
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Forward Checking
•

 
Idea: 
–

 

Keep track of remaining legal values for unassigned variables
–

 

Terminate search when any variable has no legal values�
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Constraint Propagation
•

 
Forward checking propagates information from assigned 
to unassigned variables, but doesn't provide early 
detection for all failures:�

•
 

NT and SA cannot both be blue!�
•

 
Constraint propagation

 
repeatedly enforces constraints 

locally�
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Arc Consistency
•

 
Simplest form of propagation makes each arc consistent

•
 

X Y is consistent iff�
for every

 

value x of X there is some

 

allowed value y of Y�
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Arc Consistency
•

 
Simplest form of propagation makes each arc consistent

•
 

X Y is consistent iff�
for every

 

value x of X there is some

 

allowed value y of Y�
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Arc Consistency
•

 
Simplest form of propagation makes each arc consistent

•
 

X Y is consistent iff�
for every

 

value x of X there is some

 

allowed value y�of Y

•
 

If X
 

loses a value, neighbors of X
 

need to be rechecked�
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Arc consistency
•

 
Simplest form of propagation makes each arc consistent

•
 

X Y is consistent iff�
for every

 

value x of X there is some

 

allowed value y�of Y

•
 

If X
 

loses a value, neighbors of X
 

need to be rechecked
•

 
Arc consistency detects failure earlier than forward 
checking�

•
 

Can be run as a preprocessor or after each 
assignment�

�
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Arc Consistency Algorithm AC-3
 Sometimes called Discrete Relaxation

•
 

Time complexity: O(n2d3)�
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Putting It All Together

•
 

backtracking tree search
•

 
with forward checking

•
 

add arc-consistency
–

 
For each pair of future variables (ui,uj) that
constrain one another

–
 

Check each possible remaining value v
 

of ui
–

 
Is there a compatible value w

 
of uj?

–
 

If not, remove v
 

from possible values for ui
(set FTAB(ui,v) to 0)
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Comparison of Methods

• Backtracking tree search is a blind search.

• Forward checking checks constraints between the
current variable and all future ones.

• Arc consistency then checks constraints between
all pairs of future (unassigned) variables.

• What is the complexity of a backtracking tree search?

• How do forward checking and arc consistency affect that?
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k-consistency
(from Haralick

 
and Shapiro, 1979,

The Consistent Labeling Problem: Part I)

Variables: U = {u1, u2, …
 

, un}
Values:     V = {v1, v2, …

 
, vm}

Constraint Relation: R = {(u1,v1,u2,v2, …
 

uk,vk) |
u1 having value v1, u2 having value v2,…
uk

 
having value vk

 
are mutually compatible} 

hyperarc



44

k-consistency

The φkp

 

discrete relaxation operator tried to
extend k-tuples

 
of consistent variables and values

to (k+p)-tuples
 

of consistent variables and values
in order to end up with a complete labeling consistent
over all n

 
variables and their values.

It did a great job of pruning the search, but it was
very expensive to run.
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Local Search for CSPs
•

 
Hill-climbing, simulated annealing typically work with 
"complete" states, i.e., all variables assigned�

•
 

To apply to CSPs:�
–

 

allow states with unsatisfied constraints�
–

 

operators reassign

 

variable values�

•
 

Variable selection: randomly select any conflicted 
variable�

•
 

Value selection by min-conflicts heuristic:�
–

 

choose value that violates the fewest constraints�
–

 

i.e., hill-climb with h(n) = total number of violated constraints�
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Example: 4-Queens
•

 
States: 4 queens in 4 columns (44

 

= 256 states)�
•

 
Actions: move queen in column�

•
 

Goal test: no attacks�
•

 
Evaluation: h(n) = number of attacks�

•
 

Given random initial state, can solve n-queens in almost 
constant time for arbitrary n

 
with high probability (e.g., n

 = 10,000,000)�
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Summary
•

 

CSPs

 

are a special kind of problem:�
–

 

states defined by values of a fixed set of variables�
–

 

goal test defined by constraints on variable values�

•

 

Backtracking = depth-first search with one variable assigned per 
node�

•

 

Variable ordering and value selection heuristics help significantly�

•

 

Forward checking prevents assignments that guarantee later 
failure�

•

 

Constraint propagation (e.g., arc consistency) does additional work 
to constrain values and detect inconsistencies�

•

 

Iterative min-conflicts is often effective in practice�
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