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Recall: Admissable Heuristics

• f(x) = g(x) + h(x)

• g: cost so far

• h: underestimate of remaining costs

Where do heuristics come from?

e.g., hSLD
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Relaxed Problems
• Derive admissible heuristic from exact cost 

of a solution to a relaxed version of problem

 For route planning, what is a relaxed problem?

• Cost of optimal soln to relaxed problem ≤
cost of optimal soln for real problem

Relax requirement that car has to stay on road 
à Straight Line Distance becomes optimal cost 
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Heuristics for eight puzzle

7   2   3

8   4

5   1   6
1   2   3

7   8

4   5   6

start goal

àààà

• What can we relax?
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Heuristics for eight puzzle
7   2   3

8   4

5   1   6
1   2   3

7   8

4   5   6àààà

Original: Tile can move from location A to B if A is 
horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any A to any B

Cost = h1 = number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is 
horizontally or vertically next to B

Cost = h2 = total Manhattan distance
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Importance of Heuristics

d IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

7    2     3

8    5

4    1     6

Avg number of nodes generated

Recall from last time: h2 dominates h1
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Need for Better Heuristics

Performance of h2 (Manhattan Distance Heuristic)

 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation
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Creating New Heuristics

• Given admissible heuristics h1, h2, …, hm, 
none of them dominating any other, how to 
choose the best?

• Answer: No need to choose only one! Use:

h(n) = max {h1(n), h2(n), …, hn(n)}

• h is admissible (why?)

• h dominates all hi (by construction)

• Can we do better with:

h’(n) = h1(n) + h2(n) + … + hn(n)?
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Pattern Databases [Culberson & Schaeffer 1996]

• Idea: Use solution cost of a subproblem as 
heuristic. For 8-puzzle: pick any subset of tiles

• E.g., 3, 7, 11, 12

• Precompute a table 

 Compute optimal cost of solving just these tiles
• This is a lower bound on actual cost with all tiles

 For all possible configurations of these tiles
• Could be several million 

 Use breadth first search back from goal state
• State = position of just these tiles (& blank)

 Admissible heuristic hDB for complete state = 
cost of corresponding sub-problem state in 
database

Adapted from Richard Korf presentation

10

Combining Multiple Databases

• Can choose another set of tiles
 Precompute multiple tables

• How to combine table values?
 Use the max trick!

• E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (diff subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDDFS

Adapted from Richard Korf presentation
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Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values
• But not exceed the actual solution cost (admissible)
• How?

Adapted from Richard Korf presentation
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Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table
 Don’t count moves of tiles not in set
• This makes sure costs are disjoint
• Can be added without overestimating!
• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up costs for each set in DB
 Add values to get heuristic function value

 Manhattan distance is a special case of this idea 
where each set is a single tile

Adapted from Richard Korf presentation

9  10  11 12

13 14  15

1   2   3   4
5  6   7   8
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Performance

• 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs solves 15 Puzzles 
optimally in 30 milliseconds

• 24 Puzzle: 12 millionx speedup vs Manhattan 
 IDA* can solve random instances in 2 days.
 Requires 4 DBs as shown
• Each DB has 128 million entries

 Without PDBs: 65000 years

Adapted from Richard Korf presentation
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Enuff’bout
heuristics –

let’s investigate 
local search!
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Local search algorithms

• In many optimization problems, the path to the 
goal is irrelevant; the goal state itself is the 
solution

• Find configuration satisfying constraints, e.g., 
n-queens

• In such cases, we can use local search 
algorithms

• Keep a single "current" state, try to improve it
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Example: n-queens

• Put n queens on an n × n board with no two 
queens on the same row, column, or diagonal
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Hill-climbing search

• "Like climbing Everest in thick fog with 
amnesia"
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Hill-climbing search

• Problem: depending on initial state, can get 
stuck in local maxima
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Example: 8-queens problem

• h = number of pairs of queens that are attacking 
each other, either directly or indirectly 

• h = 17 for the above state

Heuristic?
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Example: 8-queens problem

• A local minimum with h = 1. Need h = 0
• How to find global minimum/maximum?
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Simulated Annealing

• Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency
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Properties of simulated annealing 

• One can prove: If T decreases slowly enough, 
then simulated annealing search will find a 
global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, 
etc
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Local Beam Search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and 
repeat.
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Next Time

• Gaming search and searching for Games
• Homework #1 due

Have a great 
weekend!


