
1

CSE 473

Chapter 4

Heuristics &

Local Search

CSE 473

Chapter 4

Heuristics &

Local Search

© CSE AI Faculty

2

Recall: Admissable Heuristics

• f(x) = g(x) + h(x)

• g: cost so far

• h: underestimate of remaining costs

Where do heuristics come from?

e.g., hSLD

2

3

Relaxed Problems
• Derive admissible heuristic from exact cost

of a solution to a relaxed version of problem

 For route planning, what is a relaxed problem?

• Cost of optimal soln to relaxed problem ≤
cost of optimal soln for real problem

Relax requirement that car has to stay on road
à Straight Line Distance becomes optimal cost

4

Heuristics for eight puzzle

7 2 3

8 4

5 1 6
1 2 3

7 8

4 5 6

start goal

àààà

• What can we relax?

3

5

Heuristics for eight puzzle
7 2 3

8 4

5 1 6
1 2 3

7 8

4 5 6àààà

Original: Tile can move from location A to B if A is
horizontally or vertically next to B and B is blank

Relaxed 1: Tile can move from any A to any B

Cost = h1 = number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is
horizontally or vertically next to B

Cost = h2 = total Manhattan distance

6

Importance of Heuristics

d IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

6 680 20 18

8 6384 39 25

10 47127 93 39

12 364404 227 73

14 3473941 539 113

18 3056 363

24 39135 1641

7 2 3

8 5

4 1 6

Avg number of nodes generated

Recall from last time: h2 dominates h1

4

7

Need for Better Heuristics

Performance of h2 (Manhattan Distance Heuristic)

 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation

8

Creating New Heuristics

• Given admissible heuristics h1, h2, …, hm,
none of them dominating any other, how to
choose the best?

• Answer: No need to choose only one! Use:

h(n) = max {h1(n), h2(n), …, hn(n)}

• h is admissible (why?)

• h dominates all hi (by construction)

• Can we do better with:

h’(n) = h1(n) + h2(n) + … + hn(n)?

5

9

Pattern Databases [Culberson & Schaeffer 1996]

• Idea: Use solution cost of a subproblem as
heuristic. For 8-puzzle: pick any subset of tiles

• E.g., 3, 7, 11, 12

• Precompute a table

 Compute optimal cost of solving just these tiles
• This is a lower bound on actual cost with all tiles

 For all possible configurations of these tiles
• Could be several million

 Use breadth first search back from goal state
• State = position of just these tiles (& blank)

 Admissible heuristic hDB for complete state =
cost of corresponding sub-problem state in
database

Adapted from Richard Korf presentation

10

Combining Multiple Databases

• Can choose another set of tiles
 Precompute multiple tables

• How to combine table values?
 Use the max trick!

• E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics
 Multiple DBs were used (diff subsets of cubies)
 Most problems solved optimally in 1 day
 Compare with 574,000 years for IDDFS

Adapted from Richard Korf presentation

6

11

Drawbacks of Standard Pattern DBs

• Since we can only take max
 Diminishing returns on additional DBs

• Would like to be able to add values
• But not exceed the actual solution cost (admissible)
• How?

Adapted from Richard Korf presentation

12

Disjoint Pattern DBs

• Partition tiles into disjoint sets
 For each set, precompute table
 Don’t count moves of tiles not in set
• This makes sure costs are disjoint
• Can be added without overestimating!
• E.g. 8 tile DB has 519 million entries
• And 7 tile DB has 58 million

• During search
 Look up costs for each set in DB
 Add values to get heuristic function value

 Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation

9 10 11 12

13 14 15

1 2 3 4
5 6 7 8

7

13

Performance

• 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs solves 15 Puzzles
optimally in 30 milliseconds

• 24 Puzzle: 12 millionx speedup vs Manhattan
 IDA* can solve random instances in 2 days.
 Requires 4 DBs as shown
• Each DB has 128 million entries

 Without PDBs: 65000 years

Adapted from Richard Korf presentation

14

Enuff’bout
heuristics –

let’s investigate
local search!

8

15

Local search algorithms

• In many optimization problems, the path to the
goal is irrelevant; the goal state itself is the
solution

• Find configuration satisfying constraints, e.g.,
n-queens

• In such cases, we can use local search
algorithms

• Keep a single "current" state, try to improve it

16

Example: n-queens

• Put n queens on an n × n board with no two
queens on the same row, column, or diagonal

9

17

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia"

18

Hill-climbing search

• Problem: depending on initial state, can get
stuck in local maxima

10

19

Example: 8-queens problem

• h = number of pairs of queens that are attacking
each other, either directly or indirectly

• h = 17 for the above state

Heuristic?

20

Example: 8-queens problem

• A local minimum with h = 1. Need h = 0
• How to find global minimum/maximum?

11

21

Simulated Annealing

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

22

Properties of simulated annealing

• One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling,
etc

12

23

Local Beam Search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

• If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

24

Next Time

• Gaming search and searching for Games
• Homework #1 due

Have a great
weekend!

