
1

CSE 473

Chapter 4

Informed Search

CSE 473

Chapter 4

Informed Search

© CSE AI Faculty

2

Last Time

Blind Search

 BFS

 UC-BFS

 DFS

 DLS

 Iterative Deepening 

 Bidirectional Search
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Repeated States

• Failure to detect repeated states can turn a linear problem 

into an exponential one! (e.g., repeated states in 8 puzzle)

• Graph search algorithm: Store expanded nodes in a set 

called closed and only add new nodes to the fringe
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Graph Search
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Can we do better?

All these methods are slow (blind)

Solution ⇒ use problem-specific knowledge to 
guide search (“heuristic function”)

⇒ “informed search”
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Best-first Search

• Generalization of breadth first search

• Priority queue of nodes to be explored

• Evaluation function f(n) used for each node

Insert initial state into priority queue

While queue not empty

Node = head(queue)

If goal(node) then return node

Insert children of node into pr. queue
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Who’s on (best) first?

• Breadth first is best first

 With f(n) = depth(n)

• Dijkstra’s Algorithm is best first

 With f(n) = g(n)

 where g(n) = sum of edge costs from start to n
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Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic) = estimate 

of cost from n to goal

• e.g., Route finding problems: hSLD(n) = straight-line 

distance from n to destination

• Greedy best-first search expands the node that appears

to be closest to goal
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Example: Lost in Romania
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Example: Greedily Searching for Bucharest

hSLD(Arad)
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Example: Greedily Searching for Bucharest
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Example: Greedily Searching for Bucharest
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Example: Greedily Searching for Bucharest

Not optimal! 
Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest shorter

Greed 
doesn’t 

pay!
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Properties of Greedy Best-First Search

• Complete? No – can get stuck in loops, e.g.,

 Iasi → Neamt → Iasi → Neamt →

• Time? O(bm), but a good heuristic can give 

dramatic improvement

• Space? O(bm) -- keeps all nodes in memory

• Optimal? No
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A* Search 
(Hart, Nilsson & Rafael 1968)

 Best first search with f(n) = g(n) + h(n)

g(n) = sum of edge costs from start to n

 + heuristic function h(n) = estimate of lowest cost path 

from n to goal

 If h(n) is “admissible” then search will be optimal

Underestimates cost 
of any solution which 
can be reached from node

{
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Back in Romania Again

end

sta
rt

Aici noi
energie
iar!
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A* Example
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A* Example
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A* Example
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A* Example
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A* Example
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A* Example
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Admissible heuristics

• A heuristic h(n) is admissible if 

for every node n,

h(n) ≤ h*(n)

where h*(n) is the true cost to reach the goal 

state from n.

• An admissible heuristic never overestimates

the cost to reach the goal, i.e., it is optimistic
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Admissible Heuristics

• Example: Straight Line Distance heuristic 

hSLD(n) is admissible (never overestimates 

the actual road distance)

• Theorem: If h(n) is admissible, A* using 

TREE-SEARCH is optimal.
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Optimality of A* (proof)

• Suppose some suboptimal goal G2 has been generated and is 
in the fringe. Let n be an unexpanded node in the fringe 
such that n is on a shortest path to an optimal goal G.

• f(G2)  = g(G2) since h(G2) = 0 
• > g(G) since G2 is suboptimal 
• f(G)   = g(G) since h(G) = 0 
• f(G2)  > f(G) from above 
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Optimality of A* (cont.)
• Suppose some suboptimal goal G2 has been generated and is in the 

fringe. Let n be an unexpanded node in the fringe such that n is on 
a shortest path to an optimal goal G.

• f(G2) > f(G) from above 
• h(n) ≤ h*(n) since h is admissible
• g(n) + h(n) ≤ g(n) + h*(n) 
• f(n) ≤ f(G)

Hence f(n) < f(G2), i.e., A* will never select G2 for expansion.
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Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes
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Okay, proof is done!
Time to wake up…

AI 
rocks!
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Properties of A*

• Complete? Yes (unless there are infinitely 
many nodes with f ≤ f(G) )

• Time? Exponential (for most heuristic 
functions in practice)

• Space? Keeps all generated nodes in 
memory (exponential number of nodes)

• Optimal? Yes
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Admissible heuristics

E.g., for the 8-puzzle, what are some 
heuristic functions?

• h1(n) = ?
• h2(n) = ?
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Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares 
from desired location of each tile)

• h1(S) = ? 
• h2(S) = ? S
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Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares 
from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18



17

33

Dominance

• If h2(n) ≥ h1(n) for all n (both 
admissible) then h2 dominates h1

• h2 is better for search
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Dominance

• E.g., for 8-puzzle heuristics h1 and h2, 
typical search costs (average number of 
nodes expanded for solution depth d):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2) = 1,641 nodes
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Iterative-Deepening A*
• Like iterative-deepening search, but...
• Depth bound modified to be an f-limit

 Start with  limit = h(start)
 Prune any node if f(node) > f-limit
 Next f-limit=min-cost of any node pruned

a

b

c

d

e

f

f-L=15

f-L=21
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Next Time

• How to climb hills
• How to reach the top by annealing
• How to simulate and profit from evolution


