

Can we do better?

All these methods are slow (blind)

Solution ⇒ use problem-specific knowledge to guide search ("heuristic function")

 \Rightarrow "informed search"

Best-first Search

- Generalization of breadth first search
- Priority queue of nodes to be explored
- Evaluation function f(n) used for each node

Insert initial state into priority queue While queue not empty

- Node = head(queue)
- If goal(node) then return node
- Insert children of node into pr. queue

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1
- h_2 is better for search

Dominance E.g., for 8-puzzle heuristics h₁ and h₂, typical search costs (average number of nodes expanded for solution depth d): d=12 IDS = 3,644,035 nodes A*(h₁) = 227 nodes A*(h₂) = 73 nodes d=24 IDS = too many nodes A*(h₁) = 39,135 nodes A*(h₂) = 1,641 nodes

