
1

CSE 473

Chapter 4

Informed Search

CSE 473

Chapter 4

Informed Search

© CSE AI Faculty

2

Last Time

Blind Search

 BFS

 UC-BFS

 DFS

 DLS

 Iterative Deepening

 Bidirectional Search

2

3

Repeated States

• Failure to detect repeated states can turn a linear problem

into an exponential one! (e.g., repeated states in 8 puzzle)

• Graph search algorithm: Store expanded nodes in a set

called closed and only add new nodes to the fringe

4

Graph Search

3

5

Can we do better?

All these methods are slow (blind)

Solution ⇒ use problem-specific knowledge to
guide search (“heuristic function”)

⇒ “informed search”

6

Best-first Search

• Generalization of breadth first search

• Priority queue of nodes to be explored

• Evaluation function f(n) used for each node

Insert initial state into priority queue

While queue not empty

Node = head(queue)

If goal(node) then return node

Insert children of node into pr. queue

4

7

Who’s on (best) first?

• Breadth first is best first

 With f(n) = depth(n)

• Dijkstra’s Algorithm is best first

 With f(n) = g(n)

 where g(n) = sum of edge costs from start to n

8

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic) = estimate

of cost from n to goal

• e.g., Route finding problems: hSLD(n) = straight-line

distance from n to destination

• Greedy best-first search expands the node that appears

to be closest to goal

5

9

Example: Lost in Romania

10

Example: Greedily Searching for Bucharest

hSLD(Arad)

6

11

Example: Greedily Searching for Bucharest

12

Example: Greedily Searching for Bucharest

7

13

Example: Greedily Searching for Bucharest

Not optimal!
Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest shorter

Greed
doesn’t

pay!

14

Properties of Greedy Best-First Search

• Complete? No – can get stuck in loops, e.g.,

 Iasi → Neamt → Iasi → Neamt →

• Time? O(bm), but a good heuristic can give

dramatic improvement

• Space? O(bm) -- keeps all nodes in memory

• Optimal? No

8

15

A* Search
(Hart, Nilsson & Rafael 1968)

 Best first search with f(n) = g(n) + h(n)

g(n) = sum of edge costs from start to n

 + heuristic function h(n) = estimate of lowest cost path

from n to goal

 If h(n) is “admissible” then search will be optimal

Underestimates cost
of any solution which
can be reached from node

{

16

Back in Romania Again

end

sta
rt

Aici noi
energie
iar!

9

17

A* Example

18

A* Example

10

19

A* Example

20

A* Example

11

21

A* Example

22

A* Example

12

23

Admissible heuristics

• A heuristic h(n) is admissible if

for every node n,

h(n) ≤ h*(n)

where h*(n) is the true cost to reach the goal

state from n.

• An admissible heuristic never overestimates

the cost to reach the goal, i.e., it is optimistic

24

Admissible Heuristics

• Example: Straight Line Distance heuristic

hSLD(n) is admissible (never overestimates

the actual road distance)

• Theorem: If h(n) is admissible, A* using

TREE-SEARCH is optimal.

13

25

Optimality of A* (proof)

• Suppose some suboptimal goal G2 has been generated and is
in the fringe. Let n be an unexpanded node in the fringe
such that n is on a shortest path to an optimal goal G.

• f(G2) = g(G2) since h(G2) = 0
• > g(G) since G2 is suboptimal
• f(G) = g(G) since h(G) = 0
• f(G2) > f(G) from above

26

Optimality of A* (cont.)
• Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n is on
a shortest path to an optimal goal G.

• f(G2) > f(G) from above
• h(n) ≤ h*(n) since h is admissible
• g(n) + h(n) ≤ g(n) + h*(n)
• f(n) ≤ f(G)

Hence f(n) < f(G2), i.e., A* will never select G2 for expansion.

14

27

Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

28

Okay, proof is done!
Time to wake up…

AI
rocks!

15

29

Properties of A*

• Complete? Yes (unless there are infinitely
many nodes with f ≤ f(G))

• Time? Exponential (for most heuristic
functions in practice)

• Space? Keeps all generated nodes in
memory (exponential number of nodes)

• Optimal? Yes

30

Admissible heuristics

E.g., for the 8-puzzle, what are some
heuristic functions?

• h1(n) = ?
• h2(n) = ?

16

31

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares
from desired location of each tile)

• h1(S) = ?
• h2(S) = ? S

32

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance (no. of squares
from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

17

33

Dominance

• If h2(n) ≥ h1(n) for all n (both
admissible) then h2 dominates h1

• h2 is better for search

34

Dominance

• E.g., for 8-puzzle heuristics h1 and h2,
typical search costs (average number of
nodes expanded for solution depth d):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

18

35

Iterative-Deepening A*
• Like iterative-deepening search, but...
• Depth bound modified to be an f-limit

 Start with limit = h(start)
 Prune any node if f(node) > f-limit
 Next f-limit=min-cost of any node pruned

a

b

c

d

e

f

f-L=15

f-L=21

36

Next Time

• How to climb hills
• How to reach the top by annealing
• How to simulate and profit from evolution

