Chapter 21

CSE 473

Reinforcement Learning

The Reinforcement Learning

"Agent”

State Reward

Agent

© CSE AT Faculty

Environment

Action

Why reinforcement learning?

Programming an agent to drive a car or fly a
helicopter is very hard!
—

Can an agent learn to drive or fly
through positive/negative rewards?

© CSE AT Faculty

Why reinforcement learning?

Can an agent learn to win at board games
through rewards?

Win = large positive reward, Lose = negative
Learn evaluation function for different board positions?
Play games against itself?

© CSE AT Faculty

Why reinforcement learning?

Humans and animals learn through rewards
- Reinforcement learning as a model of brain function?

Pavlov's dog
Training: Bell = Food

After: Bell = Salivate

© CSE AT Faculty

Toy Example: Agent in a Maze

Reward
3 +10 war

2 :. -10 Punishment

1 2 3 4

States = Maze locations (1,1), (1,2),...
Actions = Move forward, left, right, back
Rewards = +10 at (3,4), -10 at (2,4)

-1 at others (cost of moving)

© CSE AT Faculty

Actions might be noisy

- An action may not always succeed

E.g. 0.9 probability of moving forward, 0.1
probability divided equally among other
neighboring locations

* Characterized by transition probabilities:
P(next state | current state, action)

© CSE AT Faculty

Goal: Learn a "Policy”

121222

1 2 3 4

Policy = for each state, what is the best
action that maximizes my expected reward?

© CSE AT Faculty

Goal: Learn a "Policy”

3 +10

1 2 3 4

The Optimal Policy

© CSE AT Faculty

A central problem in all these
cases is learning to predict
future reward
How do we do it?

Can we use supervised learning??

Predicting Delayed Rewards

* Time: O < #< T with input «(#) and reward
(1) (possibly O) at each time step

* Key Idea: Make the output «7) of supervised
learner predict total expected future
reward starting from time t

v(t) = <i r(t+ r)>

7=

-~

<> denotes average

© CSE AL Faculty 11

Learning to Predict Delayed Rewards

* Use a set of modifiable weights u(7) and
predict based on all past inputs «7):

t
v(t) = Z w(Du(t—T7) (Linear neural network)
r=0

- Would like to find u(1) that minimize:

T-1 2 (Can we minimize this using
Z r(t+1)=v(r) gradient descent and delta rule?)
=0

Yes, BUT...not yet available are future rewards

© CSE AT Faculty

Temporal Difference (TD) Learning

- Key Idea: Rewrite squared error to get rid
of future terms:

[TZi r(t+r7)— v(t)j = (r(t) + Tilr(t +1+7) —v(t)j

= (r(t) +v(r +1) —v(®))

13

Temporal Difference (TD) Learning

- TD Learning:
For each time step 1, do: ,
Forall 7(0 < r<+t), do: Vo) = 2wt =)

w(T) > w(n)+&[r(t)+v(t+1)—v()]u(t—T1)
%(—/

Expected future reward Prediction

14

Temporal Difference Learning in the Brain?

Activity of a Dopaminergic cell in Ventral Tegmental Area

Reward Prediction error [7(¢) +v(t +1) —v(?)]

50 I / .
Hz ‘ early kil ‘I Before Training

late
byl bl diulg, After Training
-0.5 0 t(s) 0 t(s) 08
stimulus J/ reward J \
No error
[0+v(+1)—v(®)] v(it)=r(t)+v(t+1)

© CSE AL Faculty 15

Selecting Actions when Reward is Delayed

States: A, B, or C
Can we learn the optimal policy for

this maze? Possible actions at
any state: Left (L)

’€| 0 or Right (R)
\J B 2 C
0 | If you randomly

A choose to go L or

| | R (random

/T\ “policy”), what
enter is the value v of

each state?

© CSE AT Faculty 16

Policy Evaluation

For random policy:
5 0

B 2C R
\g‘ | V(B)—E[(D'FEB—Q.S

A 1.1
v(iCO)=—R+-0=1
T 2 2
1 1
v(A) ==0(B)+—-0N(C)=1.75
enter 2 2
(Location, action) — new location Can learn this using
(u,a) - u TD learning:

Use output v(u) = w(u)
w(u) - wu) *+ €lr,(u) +v@u') —v(u)]

© CSE AT Faculty

17

Maze Value Learning for Random Policy

w(A) w(B) w(C)

il T

00 15 30 O 15 30 0 15 30
trial trial trial

Once I know the values, I can pick the
action that leads to the higher valued state!

LS Y ‘_f

© CSE AT Faculty

18

Selecting Actions based on Values

v(B) = 2.5 v(C) =1 Values act as

5 Q| surrogate immediate
\% C rewards = Locally
A

optimal choice leads
to globally optimal

o

’ |
P

policy

1\ Related to Dynamic
enter Programming

© CSE AL Faculty 19

Q learning

Simple method for action selection based on action values
(or Q values) Q(v,a) where vis a state and ais an action

1. Let ube the current state. Select an action a according to:

exp(BQ(u, a))

P =
7S expBowa)

2. Execute aand record new state ¢ and reward r. Update

Q:
Ou,a) - Q(u,a) +£(r tmax,, Q(u',a’) -~ 0(u,a))
3. Repeat until an end state is reached

© CSE AT Faculty 20

10

Reinforcement Learning Applications

Example: Flying a helicoptor via
reinforcement learning (videos)
(work of Andrew Ng, Stanford)

http://ai.stanford.edu/~ang/

© CSE AL Faculty 21

1

