CSE 473
Chapter 13

Outline for Next Few Lectures

- Basic notions
Atomic events, probabilities, joint distribution
Inference by enumeration
Independence & conditional independence
Bayes' rule

- Bayesian networks

- Statistical learning
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Logic vs. Probability

Symbol: Q, R ... Random variable: Q ..

Values/Domain: you specify

Bool | H
oolean values: T, F e.g. {heads, tails} [1,6]

State of the world: Atomic event: a complete
Assignment of T/F to assignment of values to Q.. Z
alQ, R .. Z * Mutually exclusive

+ Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

Joint distribution: Prob.
of every atomic event
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Types of Random Variables

Propositional or Boolean random variables
e.g., Clavity (do | have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Axioms of Probability Theory

- Just 3 are enough to build entire theory!
1. All probabilities between 0 and 1
O0<P(A)¢1
2.P(true) =1 and P(false)=0
3. Probability of disjunction of events is:

P(ALB)=P(A)+P(B)—-P(ALB)

AOB

True

© CSE AT Faculty

Prior and Joint Probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity=true) = 0.2 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = {0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s
P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather = ‘sunny rain cloudy snow
Cavity=true (0.144 0.02 0.016 0.02
Cavity = false |0.576 0.08 0.064 0.08

We will see later how any question can be answered by
the joint distribution
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Conditional (or Posterior) Probability

« Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8
i.e., given that Toothache is true (and all I know)

- Notation for conditional distributions:

P(cavity | Toothache) = 2-element vector of 2-element
vectors (2 P values when Toothache is true and 2 when false)

+ If we know more, e.g., cavity is also given, then we have
P(cavity | toothache, cavity) = 1

*+ New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(caw'ry? toothache) = 0.8
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Conditional Probability

- P(A| B) is the probability of A given B
+ Assumes that Bis the only info known.

- Defined as:
P(ACB)

P(AIB) = 5)

True

© CSE AT Faculty




Dilemma at the Dentist's

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
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Probabilistic Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch| = catchl cateh| = catch

For any proposition ¢, sum the atomic events where it is true:
P($) = Lk P(w)

P(toothache)= .108+.012+.016+.064
= .20 or 20%
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Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch| =1 catch catch| — catch

-

144 576

P(toothachelcavity) = 20+ .108 +.012 + .072 +
008-(.108+.012)
= .28
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Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch | = catch catch| — catch
108 .012 .072] .008
144 | .576

Can also compute conditional probabilities:

P(—cavity A toothache)

P(toothache)
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064

P(—cavity|toothache) =

0.4
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Problems with Enumeration

+ Worst case time: O(d")
Where d = max arity of random variables
e.g.,d = 2 for Boolean (T/F)
And n = number of random variables
- Space complexity also O(d")
Size of joint distribution
* Problem: Hard/impossible to estimate
all O(d") entries for large problems
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Independence

* Aand Bare independent iff:

P(AlB)=P(A) These two constraints are
P(BIA)=P(B)

logically equivalent

* Therefore, if Aand Bare independent:

P(ACB) _

P(AIB) = =P(A)

P(ACB)=P(A)P(B)
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Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) o P(A,B)=P(A)P(B)

. Cavity
Cavity decomposes into \J oothache Catch
Toothache  Catch -

Weather

P(Toothache, Catch, Cavity, Weather) — 2 value/s' 4 values

= P(Toothache, Catch, Cavily)P(W eather)

32 entries reduced to 12; for n independent biased coins, 2" — n

Complete independence is powerful but rare
What to do if it doesn't hold?
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Conditional Independence

P(Toothache, Cavity, Catch) has 2* — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't depend
on whether | have a toothache:
(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catch|toothache, ~cavity) = P(catch|-cavity)

Catch is conditionally independent of T'oothache given Cavity:
P(Cateh|Toothache, Cavilty) = P(Catch|Cavity)

Instead of 7 entries, only need 5 (why?)
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Conditional Independence IT

P(catch | toothache, cavity) = P(catch | cavity)
P(catch | toothache,~cavity) = P(catch |- cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Why only 5 entries in table?

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

le, 2+ 2+ 1 =5 independent numbers
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Power of Cond. Independence

» Often, using conditional independence
reduces the storage complexity of the joint
distribution from exponential to linear!!

- Conditional independence is the most basic &
robust form of knowledge about uncertain
environments.
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Next Time

- Bayes' Rule
- Bayesian Inference
* Bayesian Networks
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