csE 473 Chapters 8-9

More First-Order Logic

© CSE AI faculty

Recall: FOL Definitions

- Constants: George, Monkey2, etc.
 Name a specific object.
- Variables: X, Y.
 Refer to an object without naming it.
- Functions: banana-of, grade-of, etc.
 Mapping from objects to objects.
- Terms: George, grade-of(stdnt1)
 Refer to objects
- Relations: Curious, PokesInTheEyes, etc.
 State relationships between objects.
- Atomic Sentences: PokesInTheEyes(Moe, Curly)
 Can be true or false
 Correspond to propositional symbols P, Q

More Definitions

- Logical connectives: and, or, not, \Rightarrow , \Leftrightarrow
- · Quantifiers:

∀ For all (Universal quantifier)∃ There exists (Existential quantifier)

Examples

Monkeys are curious

 $\forall m : Monkey(m) \Rightarrow Curious(m)$

There is a curious monkey

 $\exists m: Monkey(m) \land Curious(m)$

Nested Quantifiers:

Order matters!

 $\forall x \exists y \ P(x,y) \neq \exists y \ \forall x \ P(x,y)$

Examples

Every monkey has a tail

Every monkey *shares* a tail!

 $\forall m \exists t \text{ has}(m,t)$

 $\exists t \forall m \text{ has}(m,t)$

Everybody loves somebody vs. Someone is loved by everyone

 $\forall x \exists y \ \text{loves}(x, y) \quad \exists y \ \forall x \ \text{loves}(x, y)$

Semantics

- Semantics = what the arrangement of symbols means in the world
- Propositional logic

Basic elements are variables (refer to facts about the world)

Possible worlds: mappings from variables to T/F

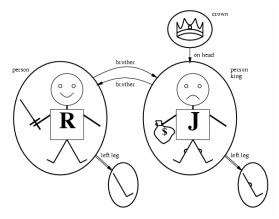
First-order logic

Basic elements are terms (refer to objects)

Interpretations: mappings from terms to realworld elements.

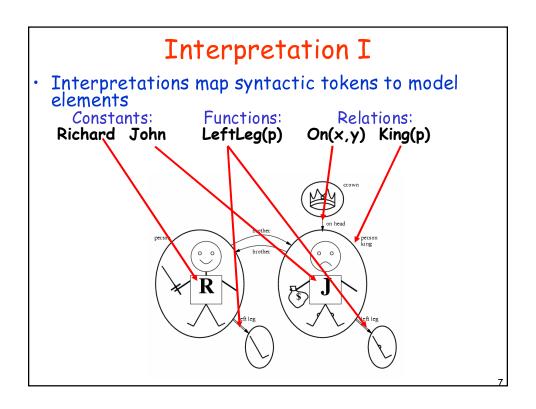
5

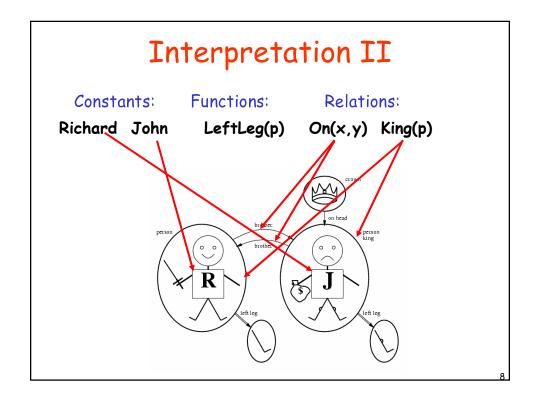
Example: A World of Kings and Legs



· Syntactic elements:

Constants: Functions: Relations: Richard John LeftLeg(p) On(x,y) King(p)





How Many Interpretations?

• Two constants (and 5 objects in world)

Richard, John (R, J, crown, RL, JL) $5^2 = 25$ object mappings

·One unary relation

Kinq(x)

Infinite number of values for x infinite mappings Even if we restricted x to: R, J, crown, RL, JL: $2^5 = 32$ unary truth mappings

Two binary relations

Leg(x, y); On(x, y)

Infinite. But even restricting x, y to five objects still yields 225 mappings for each binary relation

Satisfiability, Validity, & Entailment

- · S is valid if it is true in all interpretations
- · S is satisfiable if it is true in some interp
- · S is unsatisfiable if it is false all interps
- · S1 entails S2 if

For all interps where S1 is true, 52 is also true

Propositional. Logic vs. First Order

Ontology	Facts (P, Q,)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables & quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, WalkSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable

11

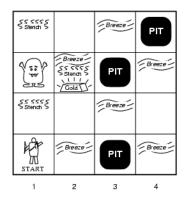
First-Order Wumpus World

Objects

Squares, wumpuses, agents, gold, pits, stinkiness, breezes

Relations

Square topology (adjacency), Pits/breezes, Wumpus/stinkiness



Wumpus World: Squares

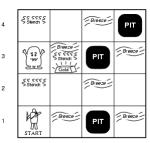
· Each square as an object:

Square_{1,1}, Square_{1,2}, ..., Square_{3,4}, Square_{4,4}

•Square topology relations?

Adjacent (Square_{1,1}, Square_{2,1}) 2

Adjacent(Square_{3,4}, Square_{4,4}) ·



Better: Squares as lists:

[1, 1], [1,2], ..., [4, 4]

Square topology relations:

∀x, y, a, b: Adjacent([x, y], [a, b])
[a, b] € {[x+1, y], [x-1, y], [x, y+1], [x, y-1]}

12

Wumpus World: Pits

·Each pit as an object:

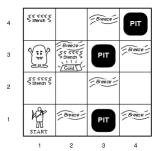
Pit_{1,1}, Pit_{1,2}, ..., Pit_{3,4}, Pit_{4,4}

Problem?

Not all squares have pits

List only the pits we have?
 Pit_{3,1}, Pit_{3,3}, Pit_{4,4}

Problem?



No reason to distinguish pits (same properties)

· Better: pit as unary predicate

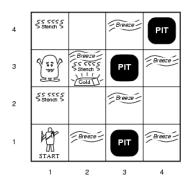
Pit(x)

Pit([3,1]); Pit([3,3]); Pit([4,4]) will be true

Wumpus World: Breezes

 Represent breezes like pits, as unary predicates:

Breezy(x)



"Squares next to pits are breezy":

 $\forall x, y, a, b$:

 $Pit([x, y]) \land Adjacent([x, y], [a, b]) \Rightarrow Breezy([a, b])$

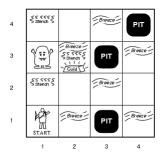
15

Wumpus World: Wumpuses

W umpus as object: W umpus

W umpus home as unary predicate:

WumpusIn(x)



• Better: Wumpus's home as a function: Home(Wumpus) references the wumpus's home square.

FOL Reasoning: Outline

- · Basics of FOL reasoning
- Classes of FOL reasoning methods

Forward & Backward Chaining Resolution Compilation to SAT

17

Basics: Universal Instantiation

· Universally quantified sentence:

 $\forall x : \mathsf{Monkey}(x) \Rightarrow \mathsf{Curious}(x)$

• Intutively, x can be anything:

 $Monkey(George) \Rightarrow Curious(George)$

 $Monkey(473Student1) \Rightarrow \textit{Curious}(473Student1)$

 $Monkey(DadOf(George)) \Rightarrow Curious(DadOf(George))$

Formally: (example)

 $\frac{\forall x \ S}{\text{Subst}(\{x/p\}, S)} \qquad \frac{\forall x \ \text{Monkey}(x) \quad \text{Curious}(x)}{\text{Monkey}(\text{George}) \quad \text{Curious}(\text{George})}$

x is replaced with p in S, x is and the quantifier removed and

x is replaced with George in S, and the quantifier removed

ப

Basics: Existential Instantiation

· Existentially quantified sentence:

 $\exists x : Monkey(x) \land \neg Curious(x)$

- Intutively, x must name something. But what?
 Monkey(George) \(\sigma \cdot \text{Curious}(George) \)??
 No! S might not be true for George!
- Use a Skolem Constant:

Monkey(K) $\land \neg Curious(K)$

...where K is a **completely new** symbol (stands for the monkey for which the statement is true)

· Formally:

∃x S Subst({x/K}, S)

K is called a Skolem constant

10

Basics: Generalized Skolemization

What if our existential variable is nested?

 $\forall x \exists y : Monkey(x) \Rightarrow HasTail(x, y)$

 $\forall x : Monkey(x) \Rightarrow HasTail(x, K_Tail) ???$

 Existential variables can be replaced by Skolem functions

Args to function are all surrounding \forall vars

 $\forall x : Monkey(x) \Rightarrow HasTail(x, f(x))$

"tail-of" function

Next Time

Reasoning with FOL

Unification Chaining Resolution