CSE 473
Chapter 7

Inference Techniques for
Logical Reasoning

Inference/Proof Techniques
+ Two kinds (roughly):

Model checking
+ Truth table enumeration (always exponential in 7)
- Efficient backtracking algorithms,
e.g., Davis-Putnam-Logemann-Loveland (DPLL)
* Local search algorithms (sound but incomplete)
e.g., randomized hill-climbing (WalkSAT)

Successive application of inference rules
* Generate new sentences from old in a sound way
* Proof = a sequence of inference rule applications
+ Use inference rules as successor functionin a
standard search algorithm

Inference Technique I: Resolution

Terminology:

Literal = proposition symbol or its negation
Eg.. A, -A, B, =B, etc.

Clause = disjunction of literals
Eg.. (BO-CO-D)

Resolution assumes sentences are in
conjunctive Normal Form (CNF):

sentence = conjunction of clauses
E.Q., (A D—lB) D(B O0-C DﬂD)

Conversion to CNF

E.qg., 31,1 int (P1,2 O P2,1)

1. Eliminate =, replacing a = p with (a = p)J(p = a).
(Bl,l = (PI,Z 0 Pz,l)) 0 ((PI,Z 0 PZ,I) = B1,1)

2. Eliminate =, replacing a = p with —alp.
(= Bl,l 0 P1,2 g PZ,I) 0= (P1,2 0 PZ,I) 0 Bl,l)

3. Move - inwards using de Morgan's rules and double-
negation:
(= B1,1 0 P1,2 0 PZ,I) O((= P1,2 0 “P2,1) 0 B1,1)

4. Apply distributivity law (O over 0) and flatten:
(= B1,1 0 P1,2 g PZ,I) 0= P1,2 0 B1,1) O(= P2,1 g Bl,l)

This is in CNF - Donel

Resolution motivation

There is a pit in [1,3] or . o
There is a pit in [2,2] There is no pit in [2,2]

There is a pit in [1,3]
More generally,

4 0. 04, - L
0. 06,06,0.. 04

Inference Technique: Resolution

General Resolution inference rule (for CNF):
q 0. O, m O... Um,
400606004 O0mO.. OmyOmyy O Om,

where [and m; are complementary literals.

E'g‘l 10113 |:| PZ,Z' 1 ID2,2 P?
5 P
1 3 B OK j%
’ w
oi_>1|EoK
* Resolution is sound

for propositional logic

Resolution

Soundness of resolution inference rule:

(0. 0606,0..04) =%
—my = (my O Omy g Omyyg Ol Oomy)

_I([I 0.0 [i-l D[i+1 0.0 4() = (7111 0.0 mj_l | mj+1 .. 0 mn)

(since £ = ~m;)

Resolution algorithm

To show KB [a, use proof by contradiction,
i.e., show KB [-a unsatisfiable

function PL-RESOLUTION(KB, o) returns true or false

clauses +— the set of clauses in the CNF representation of KB A —a
new +— { }
loop do
for each Cj, C; in clauses do
resolvents + PL-RESOLVE(C;, Cj)
if resolvents contains the empty clause then return true
new <+ new U resolvents
if new C clauses then return false
clauses + clauses U new

Resolution example
Given no breeze in [1,1], prove there's no pit in [1,2]
KB = (B1,1 = (PI,ZD P2,1)) - By anda = =P,

Resolution: Convert to CNF and show KB 0 - a is
unsatisfiable

Resolution example

l_‘Pz,1\/ Bl,l | | _‘BuV 11;1,1\/ Pz‘1 | |_‘P1‘1V B1,1‘ [_‘B1,1 ‘ | Pl‘z |
g

| / |

10

Resolution example

IﬁPM\/ B1‘1| |_‘BL1V P,V Pz,1| |_‘P1,1V B1.1‘ [_‘Bu ‘ | P1,3|

L1 P1.1V P1.1\/ _‘Pz.1| | _‘Pz.l] | _‘Pul

Empty clause
(i.e., KB 0= aunsatisfiable)

Inference Technique IT:
Forward/Backward Chaining

*+ Require sentences to be in Horn Form:

KB = conjunction of Horn clauses
Horn clause =
* proposition symbol or
* “(conjunction of symbols) = symbol”
(i.e. clause with at most 1 positive literal)
Eg.KB=COB=A)O(COD=B)
F/B chaining based on "Modus Ponens” rule:
as, ... Ay, .. Oa,=B

B

Complete for Horn clauses
Very natural and linear time complexity in size of KB

12

Forward chaining

+ Idea: fire any rule whose premises are satisfied in KB,
add its conclusion to KB, until query q is found

T
P =Q
LAM = P P
BAL = M f>\
ANP = L Y
ANB = L L
A
B %
A
Query = "Is Q true?” AND-OR Graph

13

Forward chaining algorithm

function PL-FC-EnTAILS? (KB, g) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p <+ Por(agenda)
unless inferred[p] do
inferved|p] < true
for each Horn clause ¢ in whose premise p appears do
decrement countc|
if count[c] = 0 then do
if HEAD[c] = g then return true
PusH(HEAD[c|, agenda)
return false

Forward chaining is sound & complete for Horn KB

14

Forward chaining example

Query = Q
(i.,e. "Is Q true?”)

15

Forward chaining example

16

Forward chaining example

17

18

Forward chaining example

19

20

10

Backward chaining

Idea: work backwards from the query ¢
to prove ¢ by BC,
check if gis known already, or
prove by BC all premises of some rule concluding ¢

Avoid loops: check if new subgoal is already on goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

21

Backward chaining example

22

1

Backward chaining example

12

Backward chaining example

13

Backward chaining example

14

Backward chaining example

15

Forward vs. backward chaining

+ FC is data-driven, automatic, unconscious processing,
e.g., object recognition, routine decisions

- FC may do lots of work that is irrelevant to the goal

- BC is goal-driven, appropriate for problem-solving,
e.g., How do I get an A in this class?
e.g., What is my best exit strategy out of the
classroom?
e.g., How can I impress my date tonight?

- Complexity of BC can be much less than linear in size
of KB

31

Efficient propositional inference

Two families of efficient algorithms for
propositional inference based on model checking:

Complete backtracking search algorithms
DPLL algorithm (Davis, Putnam, Logemann, Loveland)
Similar to TT enumeration from last class but with heuristics

Incomplete local search algorithms
Val kSAT algorithm

32

16

The DPLL algorithm

Determine if an ingut propositional logic
sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all
clauses.
e.g., In the three clauses (A 0-B), (=B 0 =C), (CTA), A
and B are pure, C is impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

33

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses + the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value + FIND-PURE-SYMBOL(symbols, clauses, model)

if Pis non-null then return DPLL(clauses, symbols-P, [P = value|model))
P, value + FIND-UNIT-CLAUSE(clauses, model)

if Pis non-null then return DPLL(clauses, symbols—P, [P = value|model))
P« FIRST(symbols); rest < REST(symbols)

34

17

Next Time

« WalkSAT
« HW #1 due

* Read Chapter 8
First-Order Logic

35

18

