# CSE 473 Chapter 7 Inference Techniques for Logical Reasoning

#### Inference/Proof Techniques

Two kinds (roughly):

#### Model checking

- Truth table enumeration (always exponential in n)
- Efficient backtracking algorithms,
  - e.g., Davis-Putnam-Logemann-Loveland (DPLL)
- Local search algorithms (sound but incomplete)
   e.g., randomized hill-climbing (WalkSAT)

#### Successive application of inference rules

- · Generate new sentences from old in a sound way
- Proof = a sequence of inference rule applications
- Use inference rules as successor function in a standard search algorithm

#### Inference Technique I: Resolution

#### Terminology:

Literal = proposition symbol or its negation E.g., A,  $\neg A$ , B,  $\neg B$ , etc.

Clause = disjunction of literals E.g.,  $(B \lor \neg C \lor \neg D)$ 

Resolution assumes sentences are in Conjunctive Normal Form (CNF): sentence = conjunction of clauses E.g.,  $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$ 

Conversion to CNF

E.g.,  $B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$ 

- 1. Eliminate  $\Leftrightarrow$ , replacing  $a \Leftrightarrow \beta$  with  $(a \Rightarrow \beta) \land (\beta \Rightarrow a)$ .  $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate  $\Rightarrow$ , replacing  $a \Rightarrow \beta$  with  $\neg a \lor \beta$ .  $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- Move ¬ inwards using de Morgan's rules and double-negation: (¬B<sub>1,1</sub> ∨ P<sub>1,2</sub> ∨ P<sub>2,1</sub>) ∧ ((¬P<sub>1,2</sub> ∧ ¬P<sub>2,1</sub>) ∨ B<sub>1,1</sub>)
- 4. Apply distributivity law ( $\land$  over  $\lor$ ) and flatten:  $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

This is in CNF - Done!

#### Resolution motivation

There is a pit in [1,3] or There is a pit in [2,2]

There is no pit in [2,2]

There is a pit in [1,3]

More generally,

$$\frac{\ell_1 \vee ... \vee \ell_k, \qquad \neg \ell_i}{\ell_1 \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_k}$$

Inference Technique: Resolution

· General Resolution inference rule (for CNF):

$$\frac{\mathit{l}_{1} \vee ... \vee \mathit{l}_{k}, \qquad \mathit{m}_{1} \vee ... \vee \mathit{m}_{n}}{\mathit{l}_{1} \vee ... \vee \mathit{l}_{i-1} \vee \mathit{l}_{i+1} \vee ... \vee \mathit{l}_{k} \vee \mathit{m}_{1} \vee ... \vee \mathit{m}_{j-1} \vee \mathit{m}_{j+1} \vee ... \vee \mathit{m}_{n}}$$
 where  $\mathit{l}_{i}$  and  $\mathit{m}_{j}$  are complementary literals.

E.g., 
$$P_{1,3} \vee P_{2,2}$$
,  $\neg P_{2,2}$ 



 Resolution is sound for propositional logic

#### Resolution

#### Soundness of resolution inference rule:

$$\neg (\ell_{1} \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_{k}) \Rightarrow \ell_{i}$$

$$\neg m_{j} \Rightarrow (m_{1} \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_{n})$$

$$\neg (\ell_{i} \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_{k}) \Rightarrow (m_{1} \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_{n})$$
(since  $\ell_{i} = \neg m_{j}$ )

#### Resolution algorithm

• To show KB  $\models a$ , use proof by contradiction, i.e., show  $KB \land \neg a$  unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false clauses \leftarrow \text{ the set of clauses in the CNF representation of } KB \wedge \neg \alpha new \leftarrow \{ \} loop \ do \boxed{ \begin{tabular}{l} for \ each \ C_i, \ C_j \ in \ clauses \ do \\ resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j) \\ if \ resolvents \ contains \ the \ empty \ clause \ then \ return \ true \\ new \leftarrow new \cup \ resolvents \\ if \ new \ \subseteq \ clauses \ then \ return \ false \\ clauses \leftarrow \ clauses \cup \ new \\ \hline \end{tabular}
```

# Resolution example

Given no breeze in [1,1], prove there's no pit in [1,2]

$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \text{ and } \alpha = \neg P_{1,2}$$

Resolution: Convert to CNF and show KB  $\wedge \neg$  a is unsatisfiable

9

# Resolution example



## Resolution example



Empty clause (i.e.,  $KB \land \neg a$  unsatisfiable)

..

# Inference Technique II: Forward/Backward Chaining

· Require sentences to be in Horn Form:

KB = conjunction of Horn clauses

Horn clause =

- · proposition symbol or
- \* "(conjunction of symbols)  $\Rightarrow$  symbol" (i.e. clause with at most 1 positive literal)

E.g., 
$$KB = C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$$

• F/B chaining based on "Modus Ponens" rule:

$$\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta$$

Complete for Horn clauses

· Very natural and linear time complexity in size of KB

# Forward chaining

• Idea: fire any rule whose premises are satisfied in KB, add its conclusion to KB, until query q is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Query = "Is Q true?"



AND-OR Graph

13

## Forward chaining algorithm

```
function PL-FC-ENTAILS? (KB,q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true while agenda is not empty do p \leftarrow \text{PoP}(agenda) unless inferred[p] do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do if \text{Head}[c] = q then return true \text{Push}(\text{Head}[c], agenda) return false
```

Forward chaining is sound & complete for Horn KB

4 |













## Backward chaining

Idea: work backwards from the query q:
to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on goal stack

Avoid repeated work: check if new subgoal

- 1. has already been proved true, or
- 2. has already failed

21

# Backward chaining example



















#### Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing, e.g., object recognition, routine decisions
- FC may do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
  - e.g., How do I get an A in this class?
  - e.g., What is my best exit strategy out of the classroom?
  - e.g., How can I impress my date tonight?
- Complexity of BC can be much less than linear in size of KB

31

#### Efficient propositional inference

Two families of efficient algorithms for propositional inference based on model checking:

#### Complete backtracking search algorithms

DPLL algorithm (Davis, Putnam, Logemann, Loveland)
Similar to TT enumeration from last class but with heuristics

#### Incomplete local search algorithms

WalkSAT algorithm

#### The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

#### Improvements over truth table enumeration:

- 1. Early termination
  - A clause is true if any literal is true. A sentence is false if any clause is false.
- 2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A  $\vee$  ¬B), (¬B  $\vee$  ¬C), (C  $\vee$  A), A and B are pure, C is impure.

Make a pure symbol literal true.

3. Unit clause heuristic

Unit clause: only one literal in the clause The only literal in a unit clause must be true.

22

#### The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false inputs: s, a sentence in propositional logic  $clauses \leftarrow$  the set of clauses in the CNF representation of s  $symbols \leftarrow$  a list of the proposition symbols in s return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in *clauses* is true in *model* then return *true* if some clause in *clauses* is false in *model* then return *false* 

P,  $value \leftarrow \text{Find-Pure-Symbol}(symbols, clauses, model)$ 

if P is non-null then return DPLL(clauses, symbols-P, [P = value | model])

P,  $value \leftarrow \text{FIND-UNIT-CLAUSE}(clauses, model)$ 

if P is non-null then return DPLL(clauses, symbols-P, [P = value[model])

 $P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)$ 

return DPLL(clauses, rest, [P = true | model]) or

DPLL(clauses, rest, [P = false|model])

# Next Time

- · WalkSAT
- HW #1 due
- Read Chapter 8
   First-Order Logic